In order to get lightweight radar wave absorbers, hollow carbon fibers were prepared from polyacrylonitrile (PAN) hollow fibers by thermo-oxidative stabilization in air and carbonization in nitrogen. The microstructure and microwave absorbing properties of the resultant PAN-based hollow carbon fibers (PAN-HCFs) were studied by SEM, XRD and voter network analyzer. The reflectivity was simulated by using RAMCAD software. Results show that the electromagnetic parameters of the absorbing materials increase with increase of the PAN-HCFs volume fraction. The reflection coefficient apex moves to lower frequencies with the thickness of absorbing material increasing. With increase of volume fraction of the PAN-HCFs, the reflection coefficients increase greatly and the optimal thickness decreases at the same time. It is found that the 2mm thick composites containing 33.30% PAN-HCFs has an absorbing bandwidth of 5.17GHz below -5dB and 2.88GHz below -10dB in the frequency range of 2-18GHz.The lowest reflection is -21.36dB at 10GHz. The PAN-HCFs are proved to be a light conductive radar absorbing materials in view of its hollow structures and microwave absorption properties.
XIE Wei
,
CHENG Hai-Feng
,
CHU Zeng-Yong
,
CHEN Zhao-Hui
. Microwave Absorbing Properties of Short Hollow Carbon Fiber Composites[J]. Journal of Inorganic Materials, 2008
, 23(3)
: 481
-485
.
DOI: 10.3724/SP.J.1077.2008.00481
[1] Petrov V M, Gagulin V V. J Inorg. Mater., 2001, 37 (2): 93-98.
[2] 哈恩华, 黄大庆, 丁鹤雁. 材料工程, 2006, (3): 55-59.
[3] 赵东林, 沈曾民(ZHAO Dong-Lin, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (5): 1057-1062.
[4] 戈 敏, 沈曾民. 新型碳材料, 2003, 18 (1): 31-36.
[5] Che R C, Peng L M, Duan X F, et al. Adv. Mater., 2004, 16 (5): 401-405.
[6] 朱春野, 谢自立, 郭坤敏(ZHU Chun-Ye, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (3): 599-604.
[7] Shen X, Gong R Z, Nie Y, et al. J. Magn. Magn. Mater., 2005, 288: 397-402.
[8] 赵东林, 沈曾民(ZHAO Dong-Lin, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 608-612.
[9] Park S J, Seo M K, Shim H B. Mat. Sci. Eng. A, 2003, 352: 34-39.
[10] Woo S C, Dai G L. Compos. Struct., 2007, 77: 457-465.
[11] Zhao N Q, Zou T C, Shi C S, et al. Mat. Sci. Eng. B, 2006, 127: 207-211.
[12] Yanan Sha, K. A. Jose, C. P. Neo, et al. Microw. Opt. Techn. Let., 2002, 32 (4): 245-249.
[13] BinYu, Lu Qi, Hui Sun, et al. J. Mater. Sci., 2007, 42 (1): 3783-3788.
[14] Elisa B C, Vera M S, Cristiano P B. Carbon, 2003, 41: 1707-1714.
[15] Lan Y J, Tai S C, Raj R. Carbon, 2007, 45: 166-172.
[16] Smith S PJ, Linkov V M, Sanderson R D, et al. Micropor. Mater., 1995, (4): 385-390.
[17] 孙俊芬. 聚丙烯腈基活性中空炭纤维结构和性能的研究. 上海: 东华大学博士论文, 2004.
[18] Sun J F, Wu G X, Wang Q R. J. Mater. Sci., 2005, 40: 663-668.
[19] Tsai H A, Ciou Y S, Hu C C, et al. J. Membrane. Sci., 2005, 255: 33-47.
[20] Stephen D, Frank H, Peter M B. Polymer., 1999, 40: 5531-5543.
[21] Yang M C, Chou M T. J. Membrane. Sci., 1996, 116: 279-291.
[22] Vanzura E J, Baker-Jarvis J R, Grosvenor J H, et al. IEEE Trans. Microwave Theory Tech. , 1994, 42 (11): 2063-2070.
[23] 周永江, 程海峰, 曹 义, 等. 材料工程, 2006, (4): 8-11.
[24] 周永江. PAN基吸波纤维和吸波结构的研究. 长沙: 国防科学技术大学硕士论文, 2002. 36-37.
[25] 科夫涅里斯特著, 蔡德录等译. 微波吸收材料. 北京: 科学出版社, 1985.