Research Paper

Influence of Calcination Temperature on the Dispersion Behavior and CO Oxidation Properties of CuO/γ-Al2O3 Catalyst

  • WANG Zhe ,
  • ZHAO Xi ,
  • WAN Hai-Qin ,
  • ZHU Jie ,
  • LIU Bin ,
  • DONG Lin
Expand
  • Key Laboratory of Mesoscopic Chemistry of MOE, Department of Chemistry, Nanjing University, Nanjing 210093, China

Received date: 2007-07-23

  Revised date: 2007-10-11

  Online published: 2008-05-20

Abstract

CuO/γ-Al2O3 samples were prepared by impregnating γ-Al2O3 with an aqueous solution containing requisite amount of Cu(NO3)2. BET, XRD, UV-DRS, H2-TPR and CO oxidation were employed to characterize the dispersion, reduction behavior and catalytic properties of CuO/γ-Al2O3 catalyst calcinated at different temperatures. The results indicate that the dispersion capacity of CuO on the surface of γ-Al2O3 is about 0.56mmol/100m2 when it is calcinated at 450℃; while for the samples calcinated at 750℃, Cu2+ would occupy both the octahedral and tetrahedral vacant sites on the (110) plane of γ-Al2O3. For samples with low CuO loading amount, only the reduction peak of Cu2+ in octahedral coordination environment is observed in xxCu/Al-450 samples; while for xx Cu/Al-750 samples, the reduction peaks of Cu2+ in octahedral and tetrahedral coordination environment can be observed and the reduction of Cu2+ in octahedral coordination environment would promote the reduction of Cu2+ in tetrahedral coordination environment. The CO oxidation results indicate that the activity of dispersed CuO species in octahedral coordination environment is higher than that in tetrahedral coordination environment.

Cite this article

WANG Zhe , ZHAO Xi , WAN Hai-Qin , ZHU Jie , LIU Bin , DONG Lin . Influence of Calcination Temperature on the Dispersion Behavior and CO Oxidation Properties of CuO/γ-Al2O3 Catalyst[J]. Journal of Inorganic Materials, 2008 , 23(3) : 454 -458 . DOI: 10.3724/SP.J.1077.2008.00454

References

[1] Larsson P, Andersson A, Wallenberg L R, et al. J. Catal., 1996, 163 (2): 279--293.
[2] Larsson P, Andersson A. J. Catal., 1998, 179 (1): 72--89.
[3] Centi G, Nigro C, Perathoner S, et al. Catal. Today, 1993, 17 (1): 159--166.
[4] Centi G, Perathoner S, Kartheuser B, et al. Catal. Today, 1993, 17 (1): 103--110.
[5] Centi G, Perathoner S, Kartheuser B, et al. Appl. Catal. B: Environ., 1992, 1 (2): 129--137.
[6] Park P W, Ledford J S. Appl. Catal. B: Environ., 1998, 15 (3-4): 221--231.
[7] Turek A M, Wachs I E, DeCanio E. J. Phys. Chem., 1992, 96 (12): 5000--5007.
[8] Schuit G A, Gates B C. AIChE J., 1973, 19 (3): 417--438.
[9] Jimenez-Conzalez J, Schmeiber D. Surf. Sci., 1991, 250 (1-3): 59--70.
[10] Xia W S, Wan H L, Chen Y. J. Mol. Catal. A: Chem., 1999, 138 (2-3): 185--195.
[11] Zhu H Y, Shen M M, Wu Y, et al. J. Phys. Chem. B, 2005, 109 (23): 11720--11726.
[12] Xie Y C, Tang Y Q. Adv. Catal., 1990, 37: 1--43.
[13] Xu B, Dong L, Chen Y. J. Chem. Soc. Faraday Trans., 1998, 94 (13): 1905--1909.
[14] Zhu H Y, Wu Y, Zhao X, et al. J. Mol. Catal. A: Chem., 2006, 243 (1): 24--30.
[15] Chary K V R, Seela K K, Sagar G V, et al. J. Phys. Chem. B, 2004, 108 (2): 658--663.
[16] Chary K V R, Sagar G V, Naresh D, et al. J. Phys. Chem. B, 2005, 109 (19): 9437--9444.
[17] Velu S, Suzuki K, Okazaki M, et al. J. Catal., 2000, 194 (2): 373--384.
[18] Friedman R M, Freeman J J. J. Catal., 1978, 55 (1): 10--28.
[19] Praliau H, Mikhailenko S, Chajar Z, et al. Appl. Catal. B: Environ., 1998, 16 (4): 359--374.
[20] Chen L Y, Horiuchi T, Osaki T, et al. Appl. Catal. B: Environ., 1999, 23 (4): 259--269.
[21] 董林, 金永漱, 陈懿. 中国科学(B辑), 1996, 26 (6): 561--566.
[22] Hurst N W, Gentry S, Jones, A. Catal. Rev. Sci. Eng., 1982, 24 (2): 233--309.
[23] Luo M F, Fang P, He M, et al. J. Mol. Catal. A: Chem, 2005, 239 (1-2): 243--248.
Outlines

/