Research Paper

Synthesis and Properties of Cuprous Oxide/Carbon Nanotubes Composite Superfine Spheres

  • PAN Wei-Ying ,
  • CHEN Xiao-Hua ,
  • XU Long-Shan
Expand
  • College of Materials Science and Engineering, Hunan University, Changsha 410082, China

Received date: 2007-04-17

  Revised date: 2007-06-18

  Online published: 2008-03-20

Abstract

Cuprous oxide/ carbon nanotubes (Cu2O/MWNTs) composite superfine spheres were fabricated in situ by solution method. The products were characterized via scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction pattern (XRD), UV-vis absorption spectrum and differential scanning calorimetry (DSC). The results show that the MWNTs are
embedded in cuprous oxide spheres homogeneously. Compared with pure Cu2O particle, the absorption peak of composite spheres has a tendency of blue shift, and the temperature of high temperature decomposition of ammonium perchlorate (AP) is further decreased by 11.5℃ when composite spheres act as the catalyst. In addition, the main influence on morphology and the formation mechanism of composite spheres are investigated. Results suggest that the gelatin play a key role in forming spheres and polyethylene glycol have great impact on the uniformity of spheres size.

Cite this article

PAN Wei-Ying , CHEN Xiao-Hua , XU Long-Shan . Synthesis and Properties of Cuprous Oxide/Carbon Nanotubes Composite Superfine Spheres[J]. Journal of Inorganic Materials, 2008 , 23(2) : 403 -407 . DOI: 10.3724/SP.J.1077.2008.00403

References

[1] Shen M Y, Yokouchi T, Koyama S, et al. Phys. Rev. B, 1997, 56 (20): 13066--13072.
[2] Bohannan E W, Shumsky M G, Switzer J A. Chem. Mater., 1999, 11 (9): 2289--2291.
[3] Ivan Grozdanov. Mater. Lett., 1994, 19 (5--6): 281--285.
[4] Michikazu Hara, Takeshi Kondo, Mutsuko Komoda, et al. Chem. Commun., 1998, (3): 357--358.
[5] Jorge Ramírez-Ortiz, Tetsuya Ogura, Jorge Medina-Valtierra, et al. Appl. Surf. Sci., 2001, 174 (3--4): 177--184.
[6] 朱俊武, 王艳萍, 张莉莉, 等. 材料科学与工程学报, 2006, 24 (2): 209--211.
[7] Musa I, Baxendale M, Amaratunga, et al. Synthetic Materials, 1999, 102 (3): 1250--1252.
[8] 许龙山, 陈小华, 陈传盛, 等(XU Long-Shan, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 309--314.
[9] Dong S R, Tu J P, Zhang X B. Mat. Sci. Eng. A, 2001, 313 (1--2): 83--87.
[10] Zhan G D, Joshua D Kuntz, Javier E, et al. Appl. Phys. Lett., 2003, 83 (6): 1228--1230.
[11] Philippe S, Massimiliano C, Philippe K. Applied Catalysis A: General, 2003, 253 (2): 337--358.
[12] Yu Y, Ma L L, Huang W Y, et al. Carbon, 2005, 43 (3): 670--673.
[13] Joint Committee on Powder Diffraction Standards, Diffraction Data File, No. 5-666, ICDD International Center for Diffraction Data (formerly JCPDS), Pennsylvania, USA, 1979.
[14] 周 涛, 岳 军, 王 越, 等. 化学物理学报, 2004, 17 (6): 729--734.
[15] Choon H, Bernard N, Wai Y F. J. Phys. Chem. B, 2006, 110 (42): 20801--20807.
[16] 陈宪宏, 陈小金, 钟文斌, 等. 湖南大学学报, 2006, 33 (5): 87--90.
[17] Lu C H, Qi L M, Yang J H, et al. Advanced Materials, 2005, 17 (21): 2562--2567.
Outlines

/