The necklace-like TiO2 nanoparticles were prepared by a sol-gel polymerization and subsequent calcinations. The aggregates of hydrogelator, tetraethylammonium 3-{[(2S)-2-(octadecylamino)-3-phenylpropanoyl] amino} butyrate (abbreviated as TC18PheBu) in aqueous solution were used as the templates and tetrabutyl titanate (Ti(OBu)4) was used as the source of titanium in the preparation of necklace-like TiO2 nanoparticles. The images of FE-SEM indicated that the average diameters of TiO2 nanoparticles were in the range of 200--400nm. The formation mechanism of necklace-like TiO2 nanoparticles was discussed
by FT-IR analysis, which indicated that the necklace-like TiO2 nanoparticles were formed through the electrostatic interaction between positive charged TC18PheBu and negative charged oligomers formed by the hydrolysis of Ti(OBu)4. The XRD analysis indicated that the TiO2 nanoparticles were in the form of anatase crystals.
FU Xin-Jian
,
WANG Ning-Xia
,
ZHANG Sheng-Zu
,
WANG Hong
,
YANG Ya-Jiang
. Preparation of Necklace-like TiO2 Nanoparticles Templated with L-Phenylalanine Derivative Based on Supramolecular Hydrogel[J]. Journal of Inorganic Materials, 2008
, 23(2)
: 393
-397
.
DOI: 10.3724/SP.J.1077.2008.00393
[1] Liu P, Lee S H, Tracy C E, et al. Adv. Mater., 2002, 14 (1): 27--30.
[2] 徐伏秋, 熊 飞, 张秋芬, 等(XU Fu-Qiu, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 163--166.
[3] 刘芹芹, 杨 娟, 孙秀娟, 等(LIU Qin-Qin, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 70--74.
[4] Hoffmann S T, Martin W, Choi D Bahnermann. Chem. Rev., 1995, 95 (1): 69--96.
[5] 周武艺, 唐绍裘, 张世英, 等(ZHOU Wu-Yi, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 587--592.
[6] Imai H, Takahashi N, Tamura R, et al. Langmuir, 2001, 17 (1): 17--20.
[7] 邱健全, 赵 翔, 金敏超, 等(QIU Jian-Quan, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 558--564.
[8] Caruso R A, Susha A, Caruso F. Chem. Mater., 2001, 13 (2): 400--409.
[9] Jung J H, Ono Y, Shinkai S. Angew. Chem., Int. Ed., 2000, 39 (10): 1862--1865.
[10] Jung J H, Ono Y, Hanabusa K, et al. J. Am. Chem. Soc., 2000, 122 (20): 5008--5009.
[11] Ono Y, Kanekiyo Y, Inoue K, et al. Chem. Lett., 1999, 32 (9): 475--479.
[12] Van Bommel K J C, Jung J H, Shinkai S. Adv. Mater., 2001, 13 (19): 1472--1476.
[13] Jung J H, Kobayashi H, van Bommel J C K, et al. Chem. Mater., 2002, 14 (4): 1445--1447.
[14] Chang X L, Wang L, Yang Y J, et al. Mater. Chem. Phys., 2006, 99 (1): 61--65.
[15] Yang Y G, Suzuki M, Fukui H, et al. Chem. Mater., 2006, 18 (5): 1324--1329.
[16] Fu Xinjian, Wang Ningxia, Zhang Shengzu, et al. Journal of Colloid and Interface Science, 2007, 315 (1): 376--381.
[17] Brinker C J, Scherer G W. Sol-Gel Science. Academic Press: San Diego, 1990. 360--362.
[18] Terech P, Weiss R G. Chem. Rev., 1997, 97 (8): 3133--3160.
[19] Van Esch J, Schoonbeek F, de Loos M, et al. Chem. Eur. J., 1999, 5 (3): 937--950.
[20] Tan C H, Zhu Y L, Lu R, et al. Mater. Chem. Phys., 2005, 91 (1): 44--47.
[21] Van Bommel K J C, Shinkai S. Langmiur, 2002, 18 (12): 4544--4548.