Vanadium oxide thin films with thickness of 80nm, 440nm and 1μm were deposited on normal glass substrate by reactive DC magnetron sputtering method. The surface morphology, structural feature and crystallization were studied by atomic force microscope (AFM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The results reveal that the grain size and the crystallization state of the thin films are affected by the thickness of thin films. The grain size increases and the crystallization is enhanced with the film thickness increasing. The growth of the thin film demonstrates an obvious “columnar” preferential growth perpendicular to the glass substrates. Analyses of the square resistance and its temperature dependence demonstrate that the thickness of the films plays an important role on the electric properties of vanadium oxide thin films. With the thin film thickness increasing, the square resistance decreases, the temperature coefficient of square resistance increases, width of the hysteresis loop turns to broad, and the metal-semiconductor phase transition becomes obviously.
WEI Xiong-Bang
,
WU Zhi-Ming
,
WANG Tao
,
JIANG Ya-Dong
. Growth of Vanadium Oxide Thin Films on Glass Substrate[J]. Journal of Inorganic Materials, 2008
, 23(2)
: 364
-368
.
DOI: 10.3724/SP.J.1077.2008.00364
[1] Morin F J. Phys. Rev. Lett., 1959, 3 (1): 34--36.
[2] Adler D. Rev. Mod. Phys., 1968, 40 (4): 714--736.
[3] Zylbersztejn A, Mott N F. Phys. Rev. B, 1975, 11 (11): 4383--4395.
[4] Surnev S, Ramsey M G, Netzer F P. Progress in Surface Science, 2003, 73 (4-8): 117--165.
[5] Chiarello G, Barberi R, Amoddeo A, et al. Applied Surface Science, 1996, 99 (1): 15--19.
[6] Ottaviano L, Pennisi A, Simone F. et al. Optical Materials, 2004, 27 (2): 307--313.
[7] Chen Sihai, Ma Hong, Yi Xinjian, et al. Infrared Physics and Technology, 2004, 45 (4): 239--242.
[8] Yamamura T, Watanabe N, Shiokawa Y. Journal of Alloys and Compounds, 2006, 408-412: 1260--1266.
[9] Lampert C M. Solar Energy Materials and Solar Cells, 2003, 76 (4): 489--499.
[10] Wood R A. Proc. SPIE Int. Soc. Opt. Eng., 1993, 2020(Infrared Technology XIX): 322--329.
[11] Tissot J L. Infrared Physics and Technology, 2004, 46 (1-2): 147--153.
[12] Ramana C V, Hussain O M. Material Science and Engineering B, 1998, 52 (1): 32--39.
[13] 李金华, 袁宁一, 陈王丽华, 等.物理学报, 2002, 51 (8): 1788--1792.
[14] 吴召平, 方平安(WU Zhao-Ping, et al).无机材料学报(Journal of Inorganic Materials), 1999, 14 (5): 823-0827.
[15] 陈文, 麦立强, 徐庆, 等(CHEN Wen, et al).无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 65--70.
[16] 王恩哥.物理学进展, 2003, 23 (1): 1--61.
[17] Dutta J, Roubeau P, Emei-aud T J M, et al. J. Mater. Sci., 1995, 30 (1): 53--62.
[18] 杨烈宇, 关文铎, 顾卓明.材料表面薄膜技术, 第1版.北京: 人民交通出版社, 1991.207--228.
[19] Kulkarni A K, Schulz K H, Lim T S, et al. Thin Solid Films, 1999, 345 (2): 273--277.