Research Paper

Effect of Post-annealing in Ar on Performance of LRE-Ba-Cu-O Single-grain Superconductors

  • DAI Jian-Qing ,
  • ZHAO Zhong-Xian
Expand
  • 1. Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. National Laboratory for Superconductivity, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China

Received date: 2007-03-07

  Revised date: 2007-05-16

  Online published: 2008-03-20

Abstract

Single-grain bulks of Gd-Ba-Cu-O, (SmGd)-Ba-Cu-O and (SmEuGd)-Ba-Cu-O superconductors with high performance were successfully fabricated via two-step cooling method and top-seeded-melt-growth in the ambient atmosphere. The trapped field distributions at 77K were perfect symmetric, and the maximum value of trapped field for (SmEuGd)-Ba-Cu-O sample (φ18mm) reaches 0.34T, which is comparable with that obtained through OCMG method. The effects of post-annealing in Ar (ArPA) are different for the three LRE-Ba-Cu-O systems. For Gd-Ba-Cu-O system, ArPA cannot improve the superconducting properties. For (SmGd)-Ba-Cu-O and (SmEuGd)-Ba-Cu-O systems, however, their superconducting performances can be enhanced by appropriate ArPA treatment.

Cite this article

DAI Jian-Qing , ZHAO Zhong-Xian . Effect of Post-annealing in Ar on Performance of LRE-Ba-Cu-O Single-grain Superconductors[J]. Journal of Inorganic Materials, 2008 , 23(2) : 309 -314 . DOI: 10.3724/SP.J.1077.2008.00309

References

[1] Murakami M, Sakai N, Higuchi T, et al. Supercond. Sci. Technol., 1996, 9 (12): 1015--1032.
[2] Yoo S I, Sakai N, Takachi H, et al. Appl. Phys. Lett., 1994, 65 (8): 633--635.
[3] Koblischka M R, van Dalen A J J, Higuchi T, et al. Phys. Rev. B, 1998, 58 (5): 2863--2867.
[4] Ikutay H, Masez A, Yanagix Y, et al. Supercond. Sci. Technol., 1998, 11 (10): 1345--1350.
[5] Matsui M, Sakai N, Murakami M. Physica C, 2002, 378-381: 732--736.
[6] Muralidahar M, Murakami M. Physica C, 2002, 378-381: 627--630.
[7] Nariki S, Sakai N, Murakami M. Physica C, 2002, 378-381: 631--635.
[8] Salama K, Parikh A S, Woolf L. Appl. Phys. Lett., 1996, 68 (10): 1993--1995.
[9] Hu A, Sakai N, Murakami M. Supercond. Sci. Technol., 2002, 15 (5): 675--680.
[10] Hu A, Sch\ddot{ atzle P, Bieger W, et al. Appl. Phys. Lett., 1999, 75 (2): 259--261.
[11] Hu A, Sakai N, Zhou H, et al. Supercond. Sci. Technol., 2003, 16 (1): 33--38.
[12] Hu A, Sakai N, Murakami M. Appl. Phys. Lett., 2001, 78 (17): 2539--2541.
[13] Dai J Q, Zhao Z X, Hu A. Physica C, 2004, 406: 63--71.
[14] Dai J Q, Zhao Z X, Xiong J W. Supercond. Sci. Technol., 2003, 16 (7): 815--819.
[15] Chen D X, Goldfarb R B. J. Appl. Phys., 1989, 66 (10): 2489--2493.
[16] Wu H, Dennis K W, Kramer M J, et al. Appl. Supercond., 1998, 6 (5): 87--107.
[17] Jirsa M, Pust L, Dlouhy D, et al. Phys. Rev. B, 1997, 55 (15): 3276--3283.
[18] Koblischka M R, Muralidhar M, Murakami M. Mater. Eng. Sci., 1999, B65 (1): 58--63.
Outlines

/