Research Paper

Preparation of Single Crystalline Bi2Te3 Nanorods through Chemical Reduction at Low Temperature

  • LIU Song-Xiu ,
  • LIU Hong-Mei ,
  • HUANG Kai-Xun
Expand
  • Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2007-04-30

  Revised date: 2007-06-14

  Online published: 2008-03-20

Abstract

Bi2Te3 nanorods were successfully prepared through chemical reduction at low temperature. In this process, Bi(NO3)3·5H2O and TeO2 were used as reactants, NaBH4 was used as reductant, and Brij56 (HO(CH2CH2O)10C16H33) was used as regulator of crystal growth. EDTA was added into the solution to prevent the hydrolyzation of reactants at about pH 7.0. As-synthesized sample was characterized by X-ray diffraction and X-ray fluorescence, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. Results show that Bi2Te3 nanorods are single crystalline, 30nm in diameter and 400nm in length. The temperature and the concentration of the surfactant Brij56 have obvious effects on the morphologies and sizes of synthesized sample. The growth mechanism of Bi2Te3 nanorods is also discussed.

Cite this article

LIU Song-Xiu , LIU Hong-Mei , HUANG Kai-Xun . Preparation of Single Crystalline Bi2Te3 Nanorods through Chemical Reduction at Low Temperature[J]. Journal of Inorganic Materials, 2008 , 23(2) : 305 -308 . DOI: 10.3724/SP.J.1077.2008.00305

References

[1] Disalvo F J. Science, 1999, 285 (5428): 703--706.
[2] Hicks L D, Harman T C, Dresselhaus M S, et al. Phys. Rev. B, 1996, 53 (15-16): 10493--10496.
[3] Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001, 413 (6856): 597--602.
[4] Macia E. Appl. Phys. Lett., 2000, 77 (19): 3045--3047.
[5] Sander M S, Prieto A L, Gronsky R, et al. Adv. Mater., 2002, 14 (9): 665--667.
[6] 王 为, 贾法龙, 黄庆华(WANG Wei, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (3): 517--522.
[7] 王 为, 张伟玲, 王 惠(WANG Wei, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (1): 127--132.
[8] Deng Y, Zhou X S, Wei G D, et al. J. Phys. Chem. Solid, 2002, 63 (11): 2119--2121.
[9] Deng Y, Nan C W, Wei G D, et al. Chem. Phys. Lett., 2003, 374 (3-4): 410--415.
[10] Yu S H, Yang J, Qian Y T, et al. J. Mater. Chem., 1998, 8 (9): 1949--1951.
[11] Zhao X B, Ji X H, Zhang Y H. Appl. Phys. A-Mater., 2005, 80 (7): 1567--1571.
[12] Zhao X B, Ji X H, Zhang Y H, et al. J. Alloy Compd., 2004, 368 (1-2): 349--352.
[13] Sun T, Zhao X B, Zhu T J, et al. Mater. Lett., 2006, 60 (20): 2534--2537.
[14] 孙 霆, 朱铁军, 赵新兵. 化学学报, 2005, 63 (16): 1515--1519.
[15] Zhou B, Zhao Y, Lin P, et al. Mater. Chem. Phys., 2006, 96 (2-3): 192--196.
[16] 张艳华, 赵新兵, 吉晓华. 中国稀土学报, 2004, 22 (1): 104--107.
Outlines

/