Research Paper

Crystallization Kinetics of BaO-Al2O3-SiO2 Glass-ceramics

  • LU Yu-Feng ,
  • DU Yong-Guo ,
  • XIAO Jia-Yu ,
  • ZHANG Wei-Jun ,
  • ZHENG Xiao-Hui ,
  • ZHOU Wen-Yuan
Expand
  • College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2007-03-20

  Revised date: 2007-06-26

  Online published: 2008-03-20

Abstract

BaO-Al2O3-SiO2(BAS) glass-ceramics with stoichiometric and off-stoichiometric celsian composition were fabricated. Crystallization characters of two groups of BaO-Al2O3-SiO2 (BAS) glass-ceramics were investigated by differential scanning calorimetry (DSC), X-ray diffraction(XRD), isoconversional method and multiple linear regression method. The autocatalytic kinetic model (Sest\acute ak-Berggren function) was found to be the most proper description of the studied processes for all glass investigated. Doping with ZrO2 or increasing mass fraction of BaO accelerates the crystallization process of hexagonal-BaAl2Si2O8 in BAS glass-ceramics with stoichiometric celsian composition whose viscosity is high. Moreover, the lower the temperature gets, or the higher the crystallinity gets, the more obvious the accelerating effect gets. While doping with ZrO2 decelerates the crystallization process of hexagonal-BaAl2Si2O8 in BAS glass-ceramics with off-stoichiometric celsian composition whose viscosity is low. Moreover, the higher the temperature gets, the more obvious the decelerating effect gets.

Cite this article

LU Yu-Feng , DU Yong-Guo , XIAO Jia-Yu , ZHANG Wei-Jun , ZHENG Xiao-Hui , ZHOU Wen-Yuan . Crystallization Kinetics of BaO-Al2O3-SiO2 Glass-ceramics[J]. Journal of Inorganic Materials, 2008 , 23(2) : 315 -321 . DOI: 10.3724/SP.J.1077.2008.00315

References

[1] Wolfram H, George B. Glass-ceramic Technology. Ohio: The American Ceramic Society, 2002. 1--4.
[2] 程金树, 李宏, 汤李缨, 等. 微晶玻璃. 北京: 化学工业出版社, 2006. 23--25.
[3] 芦玉峰, 堵永国, 肖加余, 等(LU Yu-Feng, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2005, 33 (12): 1488--1493.
[4] 芦玉峰, 堵永国, 肖加余, 等(LU Yu-Feng, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2007, 35 (2): 220--224.
[5] Cheng Z, Ozawa K, Osada M, et al. J. Am. Ceram. Soc., 2006, 89 (4): 1188--1192.
[6] Xavier Ramis J M S. J. Polym. Sci., Part A: Polym. Chem., 1997, 35 (2): 371--388.
[7] Guinesi L S, Da Roz a L, Corradini E, et al. Thermochim. Acta, 2006, 447 (2): 190--196.
[8] Yuan Z Z, Chen X D, Xu H, et al. J. Alloys Compd., 2006, 422 (1-2): 109--115.
[9] Prasad N S, Varma K B R. J. Am. Ceram. Soc., 2005, 88 (2): 357--361.
[10] 胡荣祖, 史启祯. 热分析动力学. 北京: 科学出版社, 2001. 65--111.
[11] Yinnon H, Uhlmann D R. J. Non-Cryst. Solids, 1983, 54 (3): 253--275.
[12] Francis a A, Rawlings R D, Sweeney R, et al. J. Non-Cryst. Solids, 2004, 333 (2): 187--193.
[13] Cannillo V, Carlier E, Manfredini T, et al. Composites Part A, 2006, 37 (1): 23--30.
[14] Bansal N P, Gamble E A. J. Power Sources, 2005, 147 (1-2): 107--115.
[15] Lee K N, Fox D S, Eldridge J I, et al. J. Am. Ceram. Soc., 2003, 86 (8): 1299--1306.
[16] Lin H L, Chiang R K, Li W T. J. Non-Cryst. Solids, 2005, 351 (37-39): 3044--3049.
[17] Ye F, Gu J C, Zhou Y, et al. J. Eur. Ceram. Soc., 2003, 23 (13): 2203--2209.
[18] Henderson D W. J. Non-Cryst. Solids, 1979, 30: 301--315.
[19] Gotor F J, Criado J M, Malek J. J. Am. Ceram. Soc., 2001, 84 (8): 1797--1802.
[20] Huang H, Gu L, Ozaki Y. Polym, 2006, 47 (11): 3935--3945.
[21] Hong J, Yi T, Min J, et al. Thermochim. Acta, 2006, 440 (1): 31--35.
[22] Silva D V, Ribeiro C A, Crespi M S. J. Therm. Anal. Calorim., 2003, 72 (1): 151--157.
[23] Malek J, Cernoskova E, Svejka R, et al. Thermochim. Acta, 1996, 280-281: 353--361.
[24] Corral J S M, Verduch A G. Trans. J. Br. Ceram. Soc., 1978, 77 (2): 40--44.
Outlines

/