Porous composite scaffolds of nano-hydroxyapatite/chitosan/carboxymethyl cellulose (n-HA/CS-CMC) with different weight ratios (0/50/50, 20/40/40, 40/30/30 and 70/15/15, respectively) were prepared by freeze-drying method for bone tissue engineering scaffold. The mechanism of formation of the composite scaffolds and the effects of inorganic component (n-HA) on the porous morphologies, mechanical properties and their degradation rate of n-HA/CS-CMC composite scaffolds were investigated by means of IR, XRD, SEM, TEM, universal material test machine and PBS soaking. The results show that the composite scaffolds is mainly formed through the complexation reaction between the two opposite polyions of CS and CMC, then n-HA is firmly incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration. The addition of inorganic component n-HA into the system of CS-CMC, which decreases slightly the regularity of pores and porosities of the n-HA/CS-CMC composite scaffolds. However, the addition of inorganic component n-HA increases the compressive strength and steps down the in ~vitro degradation of the composite scaffolds. The composite scaffold with weight ratio of inorganic component (n-HA) of 40% is most suitable for bone tissue engineering scaffold in view of its highly interconnected porous structure, high compressive strength and the acceptable degradation rate.
[1] Crane G M, Ishaug S L, Mikos A G. Nat. Med., 1995, 1 (12): 1322--1324.
[2] 肖斌, 周大利, 杨为中, 等(XIAO Bin, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 427--432.
[3] Ju H B, Wu C L, Deng Z S, et al. China Journal Modern Medicine, 2004, 12 (3): 108--110.
[4] Rezwan K, Chen Q Z, Blaker J J, et al. Biomaterials, 2006, 27 (18): 3413--3431.
[5] 张利, 李玉宝, 周钢, 等(ZHANG Li, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (5): 1197--1202.
[6] Patcharaporn Wutticharoenmongkol, Neeracha Sanchavanakit, Prasit Pavasant, et al. Macromol. Biosci., 2006, 6 (1): 70--77.
[7] Ni S Y, Chang J, Lee Chou, et al. Journal of Biomedical Materials Research Part A, 2005, 76A (1): 196--205.
[8] Chen Q Z, Boccaccini A R. Journal of Biomedical Materials Research Part A, 2006, 77A (3): 445--457.
[9] Wu C T, Chang J, Zhai W Y, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 76B (1): 49--54.
[10] Eun Songa, So Yeon Kimb, Taehoon Chun. Biomaterials, 2006, 27 (15): 2951--2961.
[11] Kim S S, Park M S, Jeon O. Biomaterials, 2006, 27 (8): 1399--1409.
[12] Devendra Verma, Kalpana Katti, Dinesh Katti. Journal of Biomedical Materials Research Part A, 2006, 78A (4): 772--780.
[13] Seol Y J, Lee J Y, Park Y J, et al. Biotechnol. Letter, 2004, 26 (13): 1037--1041.
[14] Anna Gutowska, Byeongmoon Jeong, Marek Jasionowski. The Anatomical Record, 2001, 263 (4): 342--349.
[15] 刘文辉, 刘晓亚, 陈明清, 等. 功能高分子学报, 2001, 14 (2): 493--498.
[16] Yuan Ying, Zhang Peiyun, Yang Yuming, et al. Biomaterials, 2004, 25 (18): 4273--4278.
[17] Biswal D R, Singh R P. Carbohydrate Polymers, 2004, 57 (4): 379--385.
[18] Argddot{uelles-Monal W, Peniche-Covas C. Die Makromolekulare Chemie, Rapid Communications, 1988, 9 (10): 693--697.
[19] 杨小刚, 祝志峰, 卓仁禧. 离子交换与吸附, 1999, 15 (4): 310--316.
[20] 肖海军, 侯春林, 官士兵,等. 第二军医大学学报, 2006, 27 (7): 755--759.
[21] 杨正文, 蒋引姗, 王安平, 等(YANG Zheng-Wen, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (4): 839--844.
[22] Wang Xuejiang, Li Yubao, Wei Jie, et al. Biomaterials, 2002, 23 (24): 4787--4791.
[23] Zhang Yong, Zhang Miqin. Journal of Biomedical Materials Research, 2001, 55 (3): 304--312.
[24] 杨志明. 组织工程. 北京: 化学工业出版社, 2002. 756.
[25] 张宝忠, 杜予民, 樊李, 等. 分析科学学报, 2005, 21 (3): 245--248.
[26] 魏杰, 刘昌胜, 洪华, 等(WEI Jie, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (4): 958--964.
[27] Liu Xiaohua, Peter X Ma. Annals of Biomedical Engineering, 2004, 32 (3): 477--486.