Research Paper

Simulation of Quenching Process during Microarc Oxidation (MAO) and its Effect on the Microstructure of Al2O3 Coating

  • LI Hua-Ping ,
  • CHAI Guang-Yue ,
  • PENG Wen-Da ,
  • YANG Ying ,
  • GAO Min ,
  • GUO Bao-Ping ,
  • NIU Han-Ben
Expand
  • 1. Xi’an Institute of Optics and Precession Mechanics, Chinese Academy of Sciences, Xi’an 710068, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Optoelectronics, Shenzhen University, Shenzhen 518060, China

Received date: 2007-01-20

  Revised date: 2007-03-29

  Online published: 2008-01-20

Abstract

The convection heat transfer coefficient on A12O3 coating during microarc oxidation process was estimated by experiment and
simulation. The Al2O3/Al interface was found to be a heat-transfer passage. During quenching, most heat of the micro-melting-pool was transferred through the Al substrate and the A12O3 coating nearby. The micro-melting-pool was modeled by the finite element method (FEM), and the process of quenching was characterized by the simulated temperature-time curves of the nodes along the depth, respectively. The effects of the quenching on the distribution of α-A12O3 and surface morphology of A12O3 coating were discussed by comparing the relative cooling rate at different positions. The influence of pressure on the microstructure of Al2O3 coating was also discussed briefly.

Cite this article

LI Hua-Ping , CHAI Guang-Yue , PENG Wen-Da , YANG Ying , GAO Min , GUO Bao-Ping , NIU Han-Ben . Simulation of Quenching Process during Microarc Oxidation (MAO) and its Effect on the Microstructure of Al2O3 Coating[J]. Journal of Inorganic Materials, 2008 , 23(1) : 114 -120 . DOI: 10.3724/SP.J.1077.2008.00114

References

[1] Wu Han-hua, Wang Jian-bo, Long Bei-yu, et al. Applied Surface Science, 2005, 252 (5): 1545--1552.
[2] 王乃丹, 龙北玉, 吴汉华, 等. 吉林大学学报( 理学版), 2005, 43 (5): 645--649.
[3] 龙北玉, 吴汉华, 龙北红, 等. 吉林大学学报(理学版), 2005, 43 (1): 68--72.
[4] 赵豪民, 江俊灵. 材料保护, 2005, 38 (7): 61--63.
[5] 吴汉华, 龙北红, 吕宪义, 等. 物理学报, 2005, 54 (4): 1697--1701.
[6] 吴汉华, 于凤荣, 李俊杰, 等(WU Han-Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (3): 617--622.
[7] Yerokhin A L, Shatrovb T A, Samsonovb V, et al. Surf. Coat. Technol., 2005, 199 (2--3): 150--157.
[8] Curran J A, Clyne T W. Surf. Coat. Technol., 2005, 199 (2--3): 168--176.
[9] 薛文彬, 邓志威, 来永春, 等. 材料研究学报, 1997, V11 (2): 169--172.
[10] Xue Wen-bin, Wang Chao, Deng Zhi-wei, et al. J. Phys.: Condens.Matter. 2002, 14 (44): 10947--10952.
[11] 辛明道. 沸腾传热及其强化. 重庆: 重庆大学出版社, 1987. 1--11.
[12] 杨世铭, 陶文铨. 传热学, 第三版. 北京: 高等教育出版社, 1998, 5: 215--229.
[13] Curran J A, Clyne T W. Surf. Coat. Technol., 2005, 199 (2--3): 177--183.
[14] 关振铎, 张中太, 焦金生. 无机材料物理性能. 北京: 清华大学出版社, 2004. 141--149.
[15] 国家自然科学基金委员会. 等离子体物理学. 北京: 科学出版社, 1994. 19.
[16] Plati A, Curran J A, Clyne T W. Adhesion of Plasma Electrolytic Oxidation coatings.
http://www.msm.cam.ac.uk/mmc/people/ap346/index.html Junior Euromat, September 2004, Lausanne.
[17] Khan R H U, Yerokhin A L, Pilkington T, et al. Surf. Coat. Technol., 2005, 200 (5--6): 1580-
1586.
Outlines

/