Research Paper

Hydrothermal Synthesis of TiO2 Hollow Spheres Using Rapeseed Pollen Grains as Template

  • LI Ping ,
  • ZENG Chang-Feng ,
  • ZHANG Li-Xiong ,
  • XU Nan-Ping
Expand
  • 1. College of Chemistry and Chemical Engineering, Key Laboratory of Materials-oriented Chemical Engineering of Ministry-Province, Ministry of Education, Nanjing University of Technology, Nanjing 210009, China; 2. College of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009, China

Received date: 2007-01-19

  Revised date: 2007-03-14

  Online published: 2008-01-20

Abstract

TiO2 precursor/pollen grain core-shell composite materials were prepared by hydrothermal synthesis under ultrasound irradiation by using rapeseed pollen grains as template. The core of the pollen grain could be removed by calcination at 550℃ for 6h and the TiO2 hollow spheres were consequently obtained. SEM, TG, XRD, FTIR and N2 adsorption were used to characterize the TiO2/pollen grain core-shell composites and the hollow titania spheres. The results indicate that the ultrasound irradiation helps the dispersion of TiO2 precursor on the pollen grains’ surface uniformly and the suitable amount of tetrabutyl titanate is 6.6g/g pollen, the proper temperature for the hydrothermal synthesis is 105℃. The final TiO2 hollow spheres with pure anatase phase, have narrow mesopore-size distribution, with an average pore radius of 1.9nm and BET surface area of 26.76m2·g-1.

Cite this article

LI Ping , ZENG Chang-Feng , ZHANG Li-Xiong , XU Nan-Ping . Hydrothermal Synthesis of TiO2 Hollow Spheres Using Rapeseed Pollen Grains as Template[J]. Journal of Inorganic Materials, 2008 , 23(1) : 49 -54 . DOI: 10.3724/SP.J.1077.2008.00049

References

[1] Yang H G, Zeng H C. J. Phys. Chem. B, 2004, 108 (11): 3492--3495.
[2] Li Y Z, Toyoki K, Shigenori F. J. Phys. Chem. B, 2006, 110 (26): 13000--13004.
[3] Li J, Zeng H C. Angew. Chem. Int. Ed., 2005, 44 (28): 4342--4345.
[4] Nakamura H, Ishii M, Tsukigase A, et al. Langmuir., 2005, 21 (19): 8918--8922.
[5] Kim K D, Kimb H T. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 255 (1--3): 131--137.
[6] Collins A M, Spickermann C, Mann S. J. Mater. Chem., 2003, 13 (5): 1112--1114.
[7] Li W J, Coppens M O. Chem. Mater., 2005, 17 (9): 2241--2246.
[8] Fujikawa S, Kunitake T. Langmuir., 2003, 19 (16): 6545--6552.
[9] Wang L Z, Sasaki T. Chem. Mater., 2002, 14 (11): 4827--4832.
[10] Yin J L, Chen H J, Li Z K, et al. J. Mater. Sci., 2003, 38 (24): 4911--4916.
[11] Hall S R, Bolger H, Mann S. Chem. Commun., 2003, (22): 2784--2785.
[12] Hall S R, Swinerd V M, Newby F N, et al. Chem. Mater., 2006, 18 (3): 598--600.
[13] Wang Y, Liu Z M, Han B X, et al. Langmuir, 2005, 21 (23): 10846--10849.
[14] Zhang Y X, Li G, Wu Y C, et al. J. Phys. Chem. B, 2005, 109 (21): 5478--5481.
[15] 张峰, 张歆(ZHANG Feng, et al). 无机材料学报, (Journal of Inorganic Materials), 2006, 21 (5): 1268--1272.
[16] Guo C W, Cao Y, Xie S H, et al. Chem. Commun., 2003, (6): 700--701.
[17] Shchukin D G, Caruso R A. Chem. Mater., 2004, 16 (11): 2287--2292.
[18] Strohm H, Lb\ddotomann P. J. Mater. Chem., 2004, 14 (17): 2667--2673.
Outlines

/