Research Paper

Influence of Y2BaCuO5 Particles Distribution in Melt-textured
Y-Ba-Cu-O Bulk Superconductor on the Superconducting Properties

  • LIU Jian-Jun ,
  • XU Ke-Xi ,
  • QIU Jin-He ,
  • WU Xing-Da
Expand
  • Department of Physics, Shanghai University, Shanghai 200444, China

Received date: 2006-12-27

  Revised date: 2007-06-19

  Online published: 2008-01-20

Abstract

Single-domain Y-Ba-Cu-O(YBCO) high temperature superconductor bulk was fabricated by top-seeding melt texture growth process. The distribution of Y2BaCuO5 (Y211) particles and its effect on the critical current density (Jc) and levitation force of the bulk samples were investigated. Scan electron microscope (SEM) analysis showed that the distribution of the Y211 particles presented an inhomogeneous character throughout the YBCO matrix. The experimental result also showed that the critical current density and levitation force were in inverse proportion to the mean radius of the Y211 particles. The smaller the diameter of the Y211 particles and the more uniform the distribution of the Y211 particles were, the larger the value of Jc and the levitation force were. For the sample of single-domain YBCO bulk with 20mm in diameter, the levitation force could reach 33N (77K,0.55T) and the magnitude of Jc could reach 6.6×104A/cm2.

Cite this article

LIU Jian-Jun , XU Ke-Xi , QIU Jin-He , WU Xing-Da . Influence of Y2BaCuO5 Particles Distribution in Melt-textured
Y-Ba-Cu-O Bulk Superconductor on the Superconducting Properties[J]. Journal of Inorganic Materials, 2008
, 23(1) : 13 -18 . DOI: 10.3724/SP.J.1077.2008.00013

References

[1] Dechu R, Peters P N, Sisk R C. Appl. Supercond., 1993, 1: 1265--1278.
[2] Moon F C, Chang P Z. Appl. Phys. Lett., 1990, 56 (1): 22--24.
[3] Weinstein R, Chen I G, Liu J, et al. Appl. Phys. Lett., 1990, 56 (8): 1475--1478.
[4] Campbell A M, Cardwell D A. Cryogenics, 1997, 37: 567--571.
[5] Fuchs G, Krabbes G, Schatzle P. Physica C, 1996, 268: 115--120.
[6] 沙建军, 郁金南, 原子能科学技术, 2001, 35 (2): 116--120.
[7] Desgardin G, MonoI T, Raveau B. Supercond. Sci. Technol., 1999, 12: R115--R133.
[8] Kim Chan-Joong, Hong Gye-Won. Supercond. Sci. Technol., 1999, 12: R27--R41.
[9] Cima M J, Flemings M C, Figueredo A M. J. Appl. Phys., 1992, 71: 1868--1871.
[10] Athur S P, Selvamanickam V, Balachandran U. J. Mater. Res., 1996, 11: 2976--2981.
[11] Oratai J, Fatih D, Michael S. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 3864--3867.
[12] 肖玲, 任洪涛. 低温物理学报, 1999, 21 (4): 317--320.
[13] Yang W M, Chao X X. Supercond. Sci. Technol., 2003, 16: 789--792.
[14] Chow J C, WaiLo L, Dewhurst C D. Supercond. Sci. Technol., 1997, 10: 435--443.
[15] Fujishiro H, Teshima H, Ikebe M, et al. Physica C, 2003, 392: 171--174.
Outlines

/