Research Paper

Effect of Surface-Tension Driven Convection on Interfacial Boundary Layer during BaB2O4 Single Crystal Growth

  • PAN Xiu-Hong ,
  • JIN Wei-Qing ,
  • AI-Fei ,
  • LIU Yan ,
  • ZHANG Ying
Expand
  • (Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)

Received date: 2006-11-09

  Revised date: 2006-12-11

  Online published: 2007-11-20

Abstract

Surface-tension driven convection in BaB2O4 (BBO) melt was visualized by means of a high-temperature in situ observation method, and the streamlines of steady thermocapillary convection was marked in the form of an axially symmetric pattern. Based on the observation of crystal rotation, the widths of interfacial concentration, heat and momentum boundary layers were calculated respectively. The influence of thermocapillary convection on boundary layer thickness was also investigated. Results show that the concentration boundary layer is much thinner than heat and momentum boundary layers, which indicates that mass diffusion plays a dominating role for interfacial transport. additionally, the width of the boundary layer is decreased with the increasing of dimensionless Marangoni number linearly.

Cite this article

PAN Xiu-Hong , JIN Wei-Qing , AI-Fei , LIU Yan , ZHANG Ying . Effect of Surface-Tension Driven Convection on Interfacial Boundary Layer during BaB2O4 Single Crystal Growth[J]. Journal of Inorganic Materials, 2007 , 22(6) : 1239 -1242 . DOI: 10.3724/SP.J.1077.2007.01239

References

[1] Li Y R, Peng L, Wu S Y, et al. International Journal of Thermal Sciences, 2004, 43 (6): 587--593.
[2] 金蔚青, 潘志雷, 蔡丽霞, 等(JIN Wei-Qing, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (3): 385--391.
[3] Kamotani Y, Ostrach S, Vargas M. Journal of Crystal Growth, 1984, 66 (1): 83--90.
[4] 刘照华, 金蔚青, 潘志雷, 等(LIU Zhao-Hua, et al). 无机材料学报(Journal of Inorganic Materials), 1998, 13 (1): 113--116.
[5] Bahloul A, Delahaye R, Vasseur P, et al. International Journal of Heat and Mass Transfer, 2003, 46 (10): 1759--1771.
[6] Jin W Q, Chen J Y, Li W S, et al. Ferroelectrics, 1993, 142: 13--18.
[7] Liang X A, Jin W Q, Pan Z L, et al. Progress in Crystal Growth and Characterization of Materials, 2000, 40 (1-4): 301--307.
[8] H. U. 瓦尔特, 葛培文, 王景涛等译. 空间流体科学与空间材料科学, 第一版. 北京: 中国科学技术出版社, 1991.
[9] Hong X G, Lu K Q, et al. Journal of Crystal Growth, 1998, 139 (4): 610--614.
[10] Chang C E, Wilcox W R. Journal of Crystal Growth, 1975, 28 (1): 8--12. [11] Chang C E, Wilcox W R. International Journal of Heat and Mass Transfer, 1976, 19 (4): 355--366.
[12] Schlichting H, Boundary layer theory. New York: McGraw-Hill, 1968. 695--696.
[13] Brice J C. The growth of crystals from liquids, Amsterdam: North-Holland, 1973. 132--133.
[14] 金蔚青, 潘志雷, 程宁, 等(JIN Wei-Qing, et al). 无机材料学报(Journal of Inorganic Materials), 1997, 12 (3): 279--285.
[15] Alexandr E K, Nadezhda G K, Pavel W M. J. Crystal Growth, 2000, 216 (3): 359--362.
[16] 蔡丽霞, 金蔚青, 潘志雷, 等(CAI Li-Xia, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16 (6): 1025--1031.

Outlines

/