Research Paper

Thermal Conductivity of Electric Molding Composites Filled with β-Si3N4

  • HU Yuan ,
  • CHEN Ke-Xin ,
  • JIN Hai-Bo ,
  • FU Ren-Li
Expand
  • (1. State Key of New Ceramics and Fine Processing, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China; 2. Discipline of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China; 3. Discipline of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Received date: 2006-11-13

  Revised date: 2007-05-15

  Online published: 2007-11-20

Abstract

New electric molding composites were fabricated with hybridizing epoxy and β-Si3N4 instead of silica. The thermal conductivity of composites filled with β-Si3N4 was compared with that co-filled with β-Si3N4 and SiO2. The results demonstrate that the thermal conductivity of the composite increases obviously with the increasing of β-Si3N4 content. Thermal conductivity of β-Si3N4-filled composite is about 3.8 times as large as that of SiO2-filled one when the additional volume fraction achieves to 50%. Based on the experimental results, the discussion of calculating model for predicting thermal conductivity of composites shows that Agari model is more applicable to predict the thermal conductivities of β-Si3N4 filled and β-Si3N4/SiO2 co-filled composites. Furthermore, a common expression of Agari model for co-filled composites and its parameters are given.

Cite this article

HU Yuan , CHEN Ke-Xin , JIN Hai-Bo , FU Ren-Li . Thermal Conductivity of Electric Molding Composites Filled with β-Si3N4[J]. Journal of Inorganic Materials, 2007 , 22(6) : 1201 -1205 . DOI: 10.3724/SP.J.1077.2007.01201

References

[1] Gonon P, Sylvestre A, Teysseyre J, Prior C. Journal of Materials Science: Materials in Electronics, 2001, 12: 81--86.
[2] Bujard P, Kuhnlein G, Ino S, et al. IEEE Trans. Components, Packaging, and Manu. Techno-part A, 1994, 17 (4): 527--532.
[3] Bajaj P, Jha N K, Kumar A. J. Appl. Polym. Sci., 1995, 56 (10): 1339--1347.
[4] Bujard P. Thermal conductivity of boron nitride filled epoxy resins:
temperature dependence and influence of sample preparation. Inter Society Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components: I-THERM ’88. New York, USA, 1988. 41--49.
[5] Xu Y S, Chung D D L, Mroz C. Composites, Part A: applied science and manufacturing, 2001, 32: 1749--1757.
[6] Li L, Chung D D L. Journal of Electronic Materials, 1994, 23 (6): 557--564.
[7] Lee W S, Han I Y, Jin Y, et al. Thermal characterization of
thermally conductive underfill for a flip-chip package using novel temperature sensing technique. Proceedings of 6th Electronics Packaging Technology Conference, Piscataway, NJ, USA, 2004. 47--52.
[8] Bolt J D, Button D P, Yost B A. Mat. Sci. Eng. A, 1989, A109: 207--211.
[9] 汪雨荻, 周和平, 乔梁, 等(WANG Yu-Di, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (6): 1031--1036.
[10] 汪雨荻, 周和平, 乔梁, 等. 金属学报, 2001, 37: 109--112.
[11] Mclvor S D, Darby M I, Wostenholm G H, et al. J. Mat. Sci., 1990, 25: 3127--3132.
[12] Haggerty J S, Lightfoot A. Ceram. Eng. Sci. Proc., 1995, 16: 475.
[13] Maxwell J C. A Treatise on Electricity and Magnetism. London, U. K.: Oxford Univ. Press, 1998, Ch9.1. [14] Agri Y, Uno T. J. Appl. Polym. Sci., 1986, 32: 5705--5712.
[15] Agri Y, Ueda A, Nagai S. J. Appl. Polym. Sci., 1993, 49: 1625--1634.
[16] 南策文. 非均质材料物理---显微结构-性能关联, 第一版. 北京: 科技出版社, 2005. 34--35.
Outlines

/