Research Paper

SiC Nanowires Synthesized by Microwave Heating

  • LU Bin ,
  • LIU Ji-Xuan ,
  • ZHU Hua-Wei ,
  • JIAO Xian-He
Expand
  • (School of Materials Science and Engineering, Central South University, Changsha 410083, China)

Received date: 2006-11-21

  Revised date: 2006-12-26

  Online published: 2007-11-20

Abstract

Large-scale silicon carbide nanowires were prepared by using pure silicon powder and phenolic resin, which were mixed, molded, carbonizated, and then subjected to the microwave heating with a rate of 10℃/min between 1300℃ and 1400℃ in the static argon atmosphere for 0.5--2h. The SiC nanowires were characterized by means of SEM and TEM, the composition of samples were determined through EDX. The prepared nanowires show a core-shell structure with diameters ranging from 20nm to 100 nm. The results show that liquid silicon acts as catalyst and key raw material for preparing SiC nanowires.

Cite this article

LU Bin , LIU Ji-Xuan , ZHU Hua-Wei , JIAO Xian-He . SiC Nanowires Synthesized by Microwave Heating[J]. Journal of Inorganic Materials, 2007 , 22(6) : 1135 -1138 . DOI: 10.3724/SP.J.1077.2007.01135

References

[1] Iijima.S. Nature, 1991, 354: 56--58.
[2] 丁 美, 刘建华, 李松梅, 等(DING Mei, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (6): 1363--1367.
[3] 陈明海, 高 濂(CHEN Ming-Hai, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (6): 1343--1348.
[4] 赵启涛, 候立松, 黄瑞安, 等(ZHAO Qi-Tao, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (3): 477--480.
[5] 戴长虹, 张显鹏, 张劲松, 等. 硅酸盐学报, 1996, 24 (6): 689--693.
[6] Rao C N R, Deepak F L, Gundiah G, et al. Prog. Sol. Stat. Chem., 2003, 31: 5--147.
[7] Zhang H F, Wang C M, Wang L S. Nano letter., 2002, 2 (9): 941--944.
[8] Wang Z L, Dai Z R, Gao R P, et al. Appl. Phys. Lett., 2000, 77 (21): 3349.
[9] Dai H J, Wong E W, Lu Y Z, et al. Nature, 1995, 375: 769--772.
[10] Han W Q, Fan S S, Li Q Q, et al. Chem. Phys. Lett., 1997, 265: 374--378.
[11] Zhou X T, Wang N, Lai H L, et al. Appl. Phys. Lett., 1999, 74 (26): 3942--3944.
[12] Pan Z W, Lai H L, Au F C K, et al. Adv. Mater., 2000, 12 (16): 1186--1190.
[13] Deng S Z, Wu Z S, Zhou J, et al. Chem. Phys. Lett., 2002, 356: 511--514.
[14] Kholmanov I N, Kharlamov A, Barborini E, et al. J. Nanosci. Nanotech., 2002, 2 (5): 1--4.
[15] Munoz E, Dalton A B, Collins S, et al. Chem. Phys. Lett., 2002, 359: 397--402.
[16] Gao P X, Ding Y, Mai W, et al. Science, 2005, 309: 1700--1704.
[17] Ma C, Wang Z L. Adv. Mater., 2005, 17 (21): 2635--2639.
[18] Hu J, Odom T W, Lieber C M. Acc. Chem. Res., 1999, 32: 435--445.
[19] Dekker C. Phys. Today, 1999, 52 (5): 22--28.
[20] Wang Z L. Adv. Mater., 2003, 15 (5): 432--436.
[21] Liang C H. Chem. Phys. Lett., 2000, 329: 323--328.
[22] Chang K W, W J J. J. Phys. Chem. B, 2002, 106 (32): 7796--7799.
[23] Olesinski R W, Abbaschian G J. Bull. Alloy Phase Diagrams, 1984, 5 (5): 486--489.
[24] Thompson W T, Pelton A D, Bale C W, et al. F*A*C*T*-Web: Facility for the Analysis of Chemical Thermodynamics IEB/OLJ. [2006-11-1]. http://132.207.164.4/fact/.
Outlines

/