In order to obtain the NTC thermistors with small B constant (about 1900K), applied to wide temperature range, Mn0.43Ni0.9CuFe0.67O4 NTC thermistor materials prepared by Pechini method were microwave-calcined at different temperatures (650℃, 750℃ and 850℃). The calcined Mn0.43Ni0.9CuFe0.67O4 powders were pressed and then sintered at 1000℃ in a microwave furnace (multimode cavity, 2.45GHz).The crystal structure, phase compositions, morphology and particle size distribution of the samples were analyzed by FT-IR, X-ray diffraction (XRD), scanning electron microscope (SEM) and a laser particle size analyzer. The experimental results show that the electrical properties of the ceramics are strongly dependent on the calcination and sintering process. The application of microwave leads to a lower calcination temperature (650℃) and densified uniform microstructures. Microwave sintering can obtain the components with well uniformity of B constant and resistivity, of which the Bavg. is 1930K (deviation of 0.31%) and resistivity ρavg. is 135Ω·cm (deviation of 4.55%). However, the Bavg. is 1720K (deviation of 1.47%) and resistivity ρavg. is 78Ω·cm (deviation of 25.34%) for the conventionally sintered components. From complex impedance analysis, the grain resistance (Rb) and grain boundary resistance (Rgb) are respectively 255Ω and 305Ω for the microwavesintered samples. The Rb and Rgb are respectively 200Ω and 230Ω for conventionally sintered samples.
JIN Xian-Jing
,
CHANG Ai-Min
,
ZHANG Hui-Min
,
ZHANG Dong-Yan
. Preparation and Microwave Sinterability of Mn0.43Ni0.9CuFe0.67O4 NTC
Thermistor Materials by Pechini Method[J]. Journal of Inorganic Materials, 2009
, 24(5)
: 1013
-1018
.
DOI: 10.3724/SP.J.1077.2009.01013
[1]Wang Shao-Gang, Chang Ai-Min, Zhang Hui-Min, et al. Materials Chemistry and Physics, 2008, 110(1): 83-88.
[2]Menezes R R, Kiminami R H G A. J. Mater. Process. Tech., 2008, 203(3): 513-517.
[3]孟庆新,梁宝岩,李海云,等. 功能材料与器件学报, 2008, 14(3):591-596.
[4]金钦汉.微波化学.北京:科学出版社,1999:94-96.
[5]Mohamed Aliouat, Louis Mazo, Gilbert Desgardin, et al. J.Am.Ceram.Soc., 1990, 73(8): 2515-2518.
[6]Selmi F, GuerinF, Yu X D, et al. Materials Letters, 1992, 12(6): 424-428.
[7]Mark I Jones, Maria-Cecilia Valecillos, Kiyoshi Hirao. J.Am.Ceram.Soc., 2001, 84(10): 2424-2426.
[8]Huang Z J, Masahide Gotoh, Yukio Hirose. J. Mater. Process. Tech., 2009, 209(5): 2446-2452.
[9]Kristen H Brosnan, Gary L Messing, Dinesh K Agrawal. J. Am. Ceram. Soc., 2003, 86(8): 1307-1312.
[10]Ebadzadeh T, Valefi M. Journal of Alloys and Compounds, 2008, 448(2): 246-249.
[11]常爱民,杨 文,简家文,等(CHANG Ai-Min, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17(4):713-718.
[12]Romualdo R Menezes, Pollyane M Souto, Ruth H G A Kiminami. J. Mater. Process. Tech., 2007, 190(2): 223-229.
[13]金钦汉.微波化学.北京:科学出版社,1999:17-18.
[14]聂荣佳. 铁酸盐的制备及用于两步热化学循环分解水制氢的初步研究. 鞍山: 鞍山科技大学硕士论文,2003.
[15]Roy R, Peelamedu R, Hurtt L, et al. Mater. Res. Innov., 2002, 6(3):128-140.
[16]Vaidhyanathan B, Singh A P, Agrawal D K, et al. J.Am.Ceram.Soc., 2001, 84(6): 1197-1202.
[17]莫以豪. 半导体陶瓷及敏感元件.上海:科技技术出版社,1983:182-188.
[18]Wang J, Binner J, Vaidhyanathan B. J.Am.Ceram.Soc., 2006, 89(6): 1977-1984.
[19]Song S G, Ling Z, Placido F. Materials Research Bulletin, 2005, 40(7): 1081-1093.
[20]苏树兵,宋世庚,郑应智,等. 材料科学与工程, 2002,20(3):386-389.
[21]王多君,易 丽,谢鸿森,等. 地学前缘,2005,12(1):123-129.
[22]李 莉,童茂松,翁爱华. 电子元件与材料,2006,25(6):30-32.