Research Paper

Solvothermal Synthesis of Iron Nitride Nanocrystal

  • LIU Shu-Ling ,
  • TONG Jian-Bo
Expand
  • (1. College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; 2. Key Laboratory of Auxiyiary Chemistry & Technology for Chemical Industry, Ministry of Edulation, Xi’an 710021, China)

Received date: 2008-12-08

  Revised date: 2009-02-28

  Online published: 2009-09-20

Abstract

Iron nitride nanocrystallines with core/shell structure were synthesized by solvothermal method using FeCl2·4H2O as Fe source, NH4Cl and NaN3 as mixed nitrogen source. XRD, TEM and HRTEM were adopted to characterize the phase composition morphology, and core/shell structure of the final product, respectively. The mechanism of the formation of Fe4N nanocrystallines with core/shell structure were discussed based on the XRD analysis. The effects of temperature, reaction time and feeding order in the experiment and the magnetic property were studied. The results indicate that Fe4N nanocrystallines with core/shell structure can be prepared in xylene at 400℃ through the precise control of the feeding order. Because of core/shell structure of the product, the maximum value of the specific saturation magnetization of the iron nitride nanocrystal is lower than the value reported by reference.

Cite this article

LIU Shu-Ling , TONG Jian-Bo . Solvothermal Synthesis of Iron Nitride Nanocrystal[J]. Journal of Inorganic Materials, 2009 , 24(5) : 989 -992 . DOI: 10.3724/SP.J.1077.2009.00989

References

[1]Borsa D M, Grachev S, Boerma D O. Appl. Phys. Lett., 2001, 79(7): 994-996.
[2]Sifkovits M, Smolinski H, Hellwig S, et al. J. Magn. Magn. Mater., 1999, 204(3): 191-198.
[3]Takahashi T, Takahashi N, Nakamura T. Materials Chemistry and Physics, 2004, 83(1): 7-9.
[4]Kim K J, Sumiyama K, Onodera H, et al. Jpn. J. Appl. Phys., 1994, 33(12A): 6539-6541.
[5]Cao M Sh, Wang R G, Fang X Y, et al.Powder Technology, 2001, 115(1): 96-98.
[6]Li D, Choi C J, Kim B K, et al. Journal of Magnetism and Magnetic Materials, 2004, 277(1/2): 64-70.
[7]Miola E J, Souza1 de S D, Olzon-Dionysio M, et al. Phys. Stat. Sol. (b), 2002, 231(2): 385-390.
[8]Yu K, Cao X, Prozorov R, et al. J. Mater. Chem., 1997, 7(12): 2453-2456.
[9]Desmoulins-Krawiec S, Aymonier C, Loppinet-Serani A, et al. J. Mater. Chem., 2004, 14(2): 228-232.
[10]Tao J G, Yao B, Yang J H, et al. J. Alloy. Compd., 2004, 384(1/2): 268-273.
[11]郑明远, 程瑞华, 陈小伟, 等. 高等学校化学学报, 2005, 26(4): 623-627.
[12]Petkov M, Gateshki J, Choi E G, et al. J. Mater. Chem., 2005, 15(43): 4654-4659.
[13]Xiao J P, Xie Y, Tang R, et al. Inorg. Chem., 2003, 42(13): 107-111.
[14]Dean J A. Lange’s Handbook of Chemistry, 14th. New York: McGrawHill, 1979.
[15]胡俊青. 纳米氮化物、碳化物的三元硫化物的溶剂热合成与表征. 合肥:中国科学技术大学博士学位论文, 2000.
[16]杨晓刚. 低维无机纳米材料的中温氮化合成及水热合成. 合肥: 中国科学技术大学博士学位论文, 2004.
[17]Wu X L, Zhong W, Jiang H Y, et al. J. Magn. Magn. Mater., 2004, 281(1): 77-81.
Outlines

/