The directionally solidified Si-TaSi2 eutectic in ~situ composite for field emission was prepared with the electron beam floating zone melting (EBFZM) technique. The microstructure characteristic of Si-TaSi2 eutectic was systematically investigated. The Si-TaSi2 eutectic in ~situ composite, which has high-aligned and uniformly-distributed TaSi2 fibers in the Si matrix, can be obtained when the solidification rate changes from 0.3mm/min to 9.0mm/min. With the increase of the solidification rate, the diameter and the inter-rod spacing of the TaSi2 fibers are decreased, while the density and the volume fraction of the fibers are increased. The solid/liquid interface is studied by the zero power method as well. When the solidification rate varies from 0.3mm/min to 5.0 mm/min, the solid/liquid interface morphology
has the following evolution processing: planar interface→shallow cell interface→cell interface→planar interface.
CUI Chun-Juan
,
ZHANG Jun
,
SU Hai-Jun
,
WANG Hong
,
LIU Lin
,
FU Heng-Zhi
. Microstructures of Directionally Solidified Si-TaSi2 Eutectic in situ Composite for Field Emission[J]. Journal of Inorganic Materials, 2007
, 22(5)
: 1019
-1023
.
DOI: 10.3724/SP.J.1077.2007.01019
[1] Spindt C A. J. Appl. Phys., 1968, 39: 3504--3505.
[2] Kang S Y, Lee J H, Song Y H, et al. J. Vac. Sci. Technol. B, 1998, 16 (2): 871--874.
[3] Jayatissa A H. J. Vac. Sci. Technol. B, 1999, 17: 237--240.
[4] 应根裕, 胡文波, 邱勇,等. 平板显示技术, 第一版. 北京: 人民邮电出版社, 2002. 426--428.
[5] 秦玉香, 胡明, 李海燕, 等(QIN Yu-Xiang, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 277--283.
[6] 张振华, 彭景翠, 陈小华(ZHANG Zhen-Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (2): 257--267.
[7] 刘卫东. 半导体技术, 1994, 4 (2): 1--4.
[8] Ditchek B M, Hefter J, Middleton T R. J. Crystal Growth, 1990. 401--412.
[9] Ditchek B M, Levinson M. Appl. Phys. Lett., 1986, 49 (24): 1656--1658.
[10] Kirkpatrick D A. Printer and/or copier using a field emission array. US Patent, US5903804, 1999-05-11.
[11] Zhang J, Cui C J, Han M, et al. J. Crystal Growth, 2005, 276: 92--96.
[12] Zhang J, Liu Y H, Li J G, et al. J. Mater. Sci., 1999, 34: 2507--2511.
[13] Yacobi B G, Ditchek B M. Appl. Phys. Lett., 1987, 50: 1083--1085.
[14] Elliott R. Eutectic solidification processing of Crystalline and Glassy Alloys. London: Butterworths \& Co, 1983.
[15] David R L. CRC handbook of chemistry and physics. Tokyo: CRC Press, 1989.
[16] Meschel S V, Kleppa O J. Journal of Alloys and Compounds, 1998, 280: 231-239.
[17] Dynys F W, Sayir A. Journal of European Ceramic Society, 2005, 25: 1293--1299.
[18] Jian Z Y, Kuribayashi Kazuhiko, Jie W Q. Acta Materialia, 2004, 52: 3323--3333.
[19] Yu J J, Zhang J, Wang F, et al. Materials Science and Engineering A, 2001, 311: 200--204.
[20] Rios C T, Ferrandini P L, Milenkovic S, et al. Materials Characterization, 2005, 54: 187--199.
[21] Cadirli E, Kayza H, Gunduz M. Materials Research Bulletin, 2003, 38: 1457--1476.
[22] Toloui B, Hellawel A. Acta Metall, 1976, 24: 565--573.
[23] Li S, Zhao S, Pan M, et al. Mater. Trans. JIM, 1997, 38: 553--559.
[24] 刘永才, Brandon Simon. 人工晶体学报, 1999, 28: 8--16.
[25] 刘艳红. 中国民航学院, 2001, 19: 39--42.
[26] Ditchek B M, Middleton T R, Beatty K M, et al. The Metallurgical society, 1988. 121--129.
[27] Fabietti L M, Trivedi R. J. Crystal Growth, 1997, 182: 185--197.
[28] Flood S C, Hunt J D. Journal of Metal Sci., 1981, 15: 287--294.
[29] 廖恒成, 孙国维. 铸造, 2003, 52: 1127--1129.
[30] Inui H, Moriwaki M, Yamaguchi M. Intermetallic, 1998, 6: 723--728.
[31] Sato T, Sayama Y. J. Crystal Growth, 1974, 22: 259--271.
[32] Mullins W W, Sekerka R F. J. Appl. Phys., 1964, 35: 444--451.