Research Paper

Adsorption of Aeromonas Hydrophila by Copper-bearing Montmorillonite Clays

  • XIA Mei-Sheng ,
  • HU Cai-Hong ,
  • XU Yong ,
  • ZHAO Wen-Yan
Expand
  • 1. Department of Earth Science, Zhejiang University, Hangzhou 310027, China;
    2. College of Animal Science, Zhejiang University, Hangzhou 310029, China

Received date: 2006-08-07

  Revised date: 2006-09-21

  Online published: 2007-07-20

Abstract

Calcium montmorillonite (Ca-MMT), sodium ontmorillonite (Na-MMT) and acid-activated montmorillonite (AAM), and their Cu 2+ -exchanged ontmorillonites (Cu-MMT), Cu*Ca-MMT, Cu*Na-MMT and Cu*AAM, were used to study the adsorptive activity on Aeromonas hydrophila. The Zeta potentials of MMTs and A. hydrophila are all decreased with increasing pH, and those of Cu-MMTs are increased with increasing pH and transformed from
the negative to positive value when pH=4--6. AAM, Na-MMT and Ca-MMT show some ability to reduce bacterial plate counts by 36.5%, 20.1% and 14.3%, respectively. The Cu*AAM, Cu*Na-MMT and Cu*Ca-MMT reduce the bacterial plate counts by 99.6%, 93.1% and 87.4%. The extent of bacterial adsorption onto MMTs is decreased with increasing pH. However, the bacterial adsorption onto Cu-MMTs is decreased with increasing pH and increased with increasing pH when pH>5.0. The study of desorption of Cu2+ by washing with physiological saline for 24h reveals that the washing solutions don’t show a significant reduction of the bacterial counts, while the washed Cu-MMTs retain their full antibacterial activity. The mechanism by which bacterial counts are reduced may involve the enhanced affinity of Cu-MMT for Aeromonas hydrophila and the antibacterial activity of Cu2+.

Cite this article

XIA Mei-Sheng , HU Cai-Hong , XU Yong , ZHAO Wen-Yan . Adsorption of Aeromonas Hydrophila by Copper-bearing Montmorillonite Clays[J]. Journal of Inorganic Materials, 2007 , 22(4) : 652 -656 . DOI: 10.3724/SP.J.1077.2007.00652

References

[1] Hawkins P R, Griffiths D J. J. Water Res, 1987, 21: 475--480.
[2] 李吉东, 李玉宝, 王学江, 等(LI Ji-Dong, et al). 无机材
料学报(Journal of Inorganic Materials), 2006, 21(1): 162--168.
[3] 侯文生, 魏丽乔, 戴晋明, 等(HOU Weng-Sheng, et al). 无
机材料学报(Journal of Inorganic Materials), 2005, 20 (4): 907--913.
[4] 胡彩虹, 夏枚生(HU Cai-Hong, et al). 硅酸盐学报(J. Chin. Ceram. Soc.), 2005, 33 (11): 1376--1380.
[5] Xia M S, Hu C H, Xu Z R. J. Poultr. Sci., 2004, 83 (11): 1868--1875.
[6] Hu C H, Xia M S, Xu Z R. J. Asian-Aust J Anim. Sci., 2004, 17 (11): 1575--1581.
[7] Xia M S, Hu C H, Xu Z R. J. Anim. Feed. Sci. Technol., 2005, 118 (3-4): 307--317.
[8] Theng B K G, Hayashi S, Soma M, et al. J. Clays. Clay. Miner., 1997, 45: 718--723.
[9] Van Loosdrecht M C C, Lyklema J, Nored W. J. Microbial Ecology, 1989, 17: 1--15.
[10] Davis J A, Kent D B. Surface complexation modeling in aqueous geochemistry. Mineral-water interface geochemistry. In: Hochella M.F.Jr., White A.F. Eds..
Reviews in Mineralogy and Mineralogical Society of American, Washington, D.C, 1990. 177--260.
[11] Bahranowski K, Dula R, Labanowska M, et al. Appl. Spectr., 1996, 50: 1439--1445.
[12] Stadler M, Schindler P W. J. Clays and Clay Miner, 1993, 41: 288--296.
[13] Mosser C, Michot L J, Villierns F, et al. J. Clays. Clay. Miner., 1997, 45: 789--802.
[14] He H P, Guo J G, Xie X D, et al. J. Environ. Int., 2001, 26: 347--352.
[15] Fowle D A, Fein J B. J. Geochimica Cosmochimica Acta, 1999, 63: 3059--3067.
Outlines

/