Research Paper

Synthesis of Prismatic Single Crystal γ-MnOOH

  • WANG Li ,
  • YUAN Zhong-Zhi ,
  • CHEN Qiu-Hong ,
  • SUN Feng ,
  • ZHU Li-Cai
Expand
  • School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China

Received date: 2006-09-05

  Revised date: 2006-10-29

  Online published: 2007-07-20

Abstract

Prismatic single crystal γ-MnOOH was synthesized by a hydrothermal method through oxidizing Mn(CH3COO2 with HMnO4 at 150℃. The advantage of oxidizing agent HMnO4 is that no other metallic ions coming into the product structures. The synthesized samples were characterized by XRD, SEM, TEM, HRTEM and TG. It is found that the formation process of single crystal γ-MnOOH includes two primary evolution stages: (1) the γ-MnOOH whiskers are initially formed, and (2) the whiskers grow to prismatic single crystal γ-MnOOH by an adsorption-growth process, (111) plane grows faster than other planes, because the surface energy of each crystal plane is different, the different growth rate makes the whiskers changed to prismatic crystal. The hydrothermal reaction time is the major factor that influences crystal morphology. TG results show that the single crystal γ-MnOOH is transferred to MnO2 at 350℃.

Cite this article

WANG Li , YUAN Zhong-Zhi , CHEN Qiu-Hong , SUN Feng , ZHU Li-Cai . Synthesis of Prismatic Single Crystal γ-MnOOH[J]. Journal of Inorganic Materials, 2007 , 22(4) : 667 -670 . DOI: 10.3724/SP.J.1077.2007.00667

References

[1] Huang H M, Mao S, Feick H, et al. Science, 2001, 292: 1897--1899.
[2] Armstrong A R, Bruce P G. Nature, 1996, 381: 499--500.
[3] Ammundsen B, Paulsen J. Adv. Mater., 2001, 13: 943--956.
[4] Bach S, Henry M, Baffier N, et al. J. Solid State Chem., 1990, 88: 325--330.
[5] Wang X, Li Y. Chem. Commun., 2002, 7: 764--765.
[6] Wang X, Li Y. J. Am. Chem. Soc., 2002, 124: 2880--2881.
[7] Yuan Z Y, Zhang Z L, Du G H, et al. Chem. Phys. Lett., 2003, 378: 349--353.
[8] Al-Sagheer F A, Zaki M I. Colloids Surf. A, 2000, 173: 193--204.
[9] Shen X F, Ding Y S, Hanson J C, et al. J. Am. Chem. Soc., 2006, 128: 4570--4571.
[10] Ding Y S, Shen X F, Gomez S, et al. Adv. Funct. Mater., 2006, 16: 549--555.
[11] Yuan J K, Laubernds K, Villegas J, et al. Adv. Mater., 2004, 16: 1729--1732.
[12] Cheng F Y, Zhao J Z, Song W, et al. Inorg. Chem., 2006, 45: 2038--2044.
[13] 赵丽丽, 王榕树(ZHAO Li-Li, et al). 无机材料学报(Journal of of Inorganic
Materials), 2004, 19 (2): 376--378.
[14] Xi G, Peng Y, Zhu Y. Mater. Res. Bull., 2004, 39: 1641--1648.
[15] Sun X, Ma C, Wang Y. Inorg. Chem. Commun., 2002, 5: 747--750.
[16] Yang Z H, Zhang Y C, Zhang W X, et al. J. Solid State Chem., 2006, 179: 679--684.
[17] Zhang Y C, Qiao T, Hu X Y. J. Solid State Chem., 2004, 177: 4093--4097.
[18] Zhang W X, Liu Y, Yang Z H, et al. Solid State Commun., 2004, 131: 441--445.
[19] Ocana M. Colloid Polym. Sci., 2000, 278: 443--449.
[20] Sharma P K, Whittingham M S. Mater. Lett., 2001, 48: 319--323.
[21] Kotai L, Keszler A, Pato J, et al. Indian J. Chem. Sect. A, 1999, 38A: 966--968.
[22] Johnson C J, Dujardin E, Davis S A, et al. J. Mater. Chem., 2002, 12: 1765--1770.
[23] Yu S H, C\ddot olfen H, Tauer K, et al. Nat. Mater., 2004, 4: 51--55.
[24] Wang L, Chen X, Zhan J, et al. Chem. Lett., 2004, 33: 720--722.
[25] Murphy C J. Science, 2002, 298: 2139--2141.
[26] Sharma P K, Whittingham M S. Mater. Lett., 2001, 48: 319--323.
[27] Feng Q, Kanoh H, Miyai Y, et al. Chem. Mater., 1995, 7: 1722--1727.
Outlines

/