Research Paper

Synthesis and Characterization of SnO2 Nanobelts by Carbothermal\\ Reduction of SnO2 Powder

  • NI Zi-Feng ,
  • YING Peng-Zhan ,
  • LUO Yong ,
  • DAI Xin-Lian ,
  • LIU Tao
Expand
  • 1. College of Mechanical and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China; 2. School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221008, China; 3. School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China

Received date: 2006-07-22

  Revised date: 2006-09-09

  Online published: 2007-07-20

Abstract

The mixture of SnO2 powder and graphite was ground to ensure complete mixing, and was put into an alumina boat, then this boat was placed in the hot zone of the tube, heated from room temperature to 1100℃ and kept at this temperature for 2.5h in flowing argon. The X-ray diffraction analysis (XRD) indicates that the nanobelts are tetragonal rutile structure of SnO2. Scaning electron microscope(SEM) and transmission electron microscope(TEM) observations reveal that the nanobelts are uniform. The selected-area electron diffraction analysis(SAED) demonstrates that the nanobelts are single crystal . The SnO2 nanobelts might grow via a vapor-solid(VS) process.

Cite this article

NI Zi-Feng , YING Peng-Zhan , LUO Yong , DAI Xin-Lian , LIU Tao . Synthesis and Characterization of SnO2 Nanobelts by Carbothermal\\ Reduction of SnO2 Powder[J]. Journal of Inorganic Materials, 2007 , 22(4) : 609 -612 . DOI: 10.3724/SP.J.1077.2007.00609

References

[1] Koki A, Sasakura H. Jpn. J. Appl. Phys., 1970, 9 (5): 582.
[2] Tatsuyama C, Ichmura S. Jpn. J. Appl. Phys., 1976, 15 (5): 843--847.
[3] Yamazoe N. Sens. Actuators B, 1991, 5 (1-4): 7--19.
[4] 龚树萍,刘欢,周东祥(GONG Shu-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 521--526.
[5] He Y S, Campbell J C, Murphy R C, et al. J. Mater. Res., 1993, 8 (12): 3131--3134.
[6] Wang D Z, Wen S L, Chen J, et al. Phys. Rev. B, 1994, 49 (20): 14282-14285.
[7] Wang W L, Liao K J. Thin Solid Films, 1991, 195 (1-2): 193--198.
[8] Yu K N, Xiong Y H, Liu Y L, et al. Phys. Rev. B, 1997, 55 (4): 2666--2671.
[9] Kim T W, Lee D U, Choo D C, et al. Appl. Phys., 2001, 90 (1): 175--180.
[10] Kolmakov V, Zhang Y X, Cheng G S, et al. Adv. Mater., 2003, 15 (12): 997--1000.
[11] Leite E R, Weber I T, Longo E, et al. Adv. Mater., 2000, 12 (12): 965--968.
[12] Law M, Kind H, Messer B, et al. Angew.Chem. Int. Edn Engl., 2002, 41 (13): 2405--2408.
[13] Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides. Science, 2001, 291 (5510): 1947--1949.
[14] Ma C, Ding Y, Moore D, et al, Am. Chem. Soc., 2004, 126 (3): 708--709.
[15] Dai Z R, Gole J L, Stout L D, et al. Phys. Chem. B, 2002, 106 (6): 1274--1279.
[16] Sun S H, Meng G W, Wang Y W, et al. Appl. Phys. A, 2003, 76 (2): 287--289.
[17] WuX C, Song W H, Zhao B, et al. Chem. Phys. Lett., 2001, 349 (3): 210--214.
[18] Peng H Y, Wang N, Zhou X T, et al. Chem. Phys. Lett., 2002, 359 (3): 241--245.
[19] Gundiah G, Govindaraj A, Rao C N R. Chem. Phys. Lett., 2002, 351 (3): 189--194.
[20] Yao B D, Chan Y C, Wang N. Appl. Phys. Lett., 2002, 81 (5): 757--759.
[21] Yang P D, Lieber C M. Mater. Res., 1997, 12 (11): 2981--2996.
[22] Hu J Q, Ma X L, Shang N G, et al. Phys. Chem. B, 2002, 106 (15): 3823--3826.
[23] Greiner E S, Gutowski J A, Ellis W C. J. Appl. Phys., 1961, 32 (11): 2489--2490.
[24] Wagner R S, Treuting. J. Appl. Phys., 1961, 32 (11): 2490--2491.

Outlines

/