Research Paper

Preparation and Characterization of Bat-like ZnO Micro- and Nanorods by Adjusting Oxygen Flux

  • LI Jie-Sheng ,
  • ZHU Li-Ping ,
  • TANG Hai-Ping ,
  • HE Hai-Ping ,
  • YE Zhi-Zhen ,
  • ZHAO Bing-Hui
Expand
  • State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China

Received date: 2006-08-17

  Revised date: 2006-09-30

  Online published: 2007-07-20

Abstract

High-density bat-like ZnO micro- and nanorods were prepared on Si(111) substrates by a thermal evaporation method using Zn powders and zinc acetate dihydrate (ZA) as the source materials. X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, Raman scattering and photoluminescence were used to characterize the structural and optical properties of the obtained samples. The results indicate that the individual rod has four knots with different diameters, the rods are a high-quality single crystal with a few defects. The growth mechanism of the structures proposed reveals that oxygen partial pressures play an important role in the growth process. The shape of ZnO nanostructures can be controlled by adjusting oxygen flux.

Cite this article

LI Jie-Sheng , ZHU Li-Ping , TANG Hai-Ping , HE Hai-Ping , YE Zhi-Zhen , ZHAO Bing-Hui . Preparation and Characterization of Bat-like ZnO Micro- and Nanorods by Adjusting Oxygen Flux[J]. Journal of Inorganic Materials, 2007 , 22(4) : 613 -616 . DOI: 10.3724/SP.J.1077.2007.00613

References

[1] Tang Z K, Wong G K L, Yu P, et al. Appl. Phys. Lett., 1998, 72 (25): 3270--3272.
[2] Keis K, Vayssieres L, Lindquist S, et al. Nanostruct. Mater., 1999, 12 (1-4): 487--490.
[3] Huang M H, Mao S, Feick H, et al. Science., 2001, 292 (5523): 1897--1899.
[4] Gao P X, Ding Y, Wang Z L. Nano Lett., 2003, 3 (9): 1315--1320.
[5] Pan Z W, Dai Z R, Wang Z L. Science., 2001, 291 (5510): 1947--1949.
[6] Wu J J, Liu S C, Wu T U, et al. Appl. Phys. Lett., 2002, 81 (7): 1312--1314.
[7] Hu J Q, Bando Y, Zhan H J, et al. Appl. Phys. Lett., 2003, 83 (21): 4414--4416.
[8] Zhang Y, Wang N, Gao S. Chem Mater., 2002, 14 (8): 3564--3568.
[9] Huang M H, Wu Y Y, Feick H, et al. Adv. Mater., 2001, 13 (2): 113--116.
[10] Lyu S C, Zhang Y, Lee C J, et al. Chem. Mater., 2003, 15 (17): 3294--3299.
[11] Yan H Q, He R R, Pham J, et al. Adv. Mater., 2003, 15 (5): 402--405.
[12] Gao P X, Wang Z L. Appl. Phys. Lett., 2004, 84 (15): 2883--2885.
[13] 于伟东, 李效民, 高相东(YU Wei-Dong, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 332--336.
[14] Suh H W, Kim G Y, Jung Y S, et al. J. Appl. Phys., 2005, 97 (4): 044305.
[15] Lao J Y, Huang J Y, Wang D Z, et al. Nano lett., 2003, 3 (2): 235--238.
[16] Kaschner A, Haboeck U, Strassburg M, et al. Appl. Phys. Lett., 2002, 80 (11): 1909--1911.
[17] Rajalakshmi M, Arora A K, Bendre B S, et al. J. Appl. Phys., 2000, 87 (5): 2445--2448.
[18] Park W I, Kim D H, Jung S W, et al. Appl. Phys. Lett., 2002, 80 (22): 4232--4234.
[19] Ye C H, Fang X S, Hao Y F, et al. J. Phys. Chem. B., 2005, 109 (42): 19758--19765.
[20] Laudise R A, Ballman A A. J. Phys. Chem., 1960, 64 (5): 688--691.
[21] Liao L, Li J C, Liu D H, et al. Appl. Phys. Lett., 2005, 86 (8): 083106.
[22] Zhang B P, Binh N T, Segawa Y, et al. Appl. Phys. Lett., 2004, 84 (4): 586--588.

Outlines

/