Journal of Inorganic Materials

• Research Paper • Previous Articles     Next Articles

Enhanced Photoluminescence of Er3+-doped Al2O3 Powders by Y3+

WANG-Hui, LEI-Ming-Kai   

  1. Surface Engineering Laboratory, School of Materials Science and Engineering,
    Dalian University of Technology, Dalian 116024, China
  • Received:2005-09-21 Revised:2005-10-11 Published:2006-07-20 Online:2006-07-20

Abstract: The Y3+ co-doping to the 0.1 and 1.0mol% Er3+-doped Al2O3 powders with
the molar ratio of (0~10): 1 for Y3+ and Er3+ was performed in the non-aqueous sol-gel progress using the aluminium isopropoxide Al(OC3H7)3-derived Al2O3 sols with the addition of hydrated erbium nitrate Er(NO3)3·5H2O together with yttrium nitrate Y(NO3)3·5H2O. The effects of Y3+ co-doping on the phase structure and photoluminescence (PL) of the Er3+-doped Al2O3 powders were investigated by X-ray diffraction (XRD) and PL measurement. The Y3+ addition in the Er3+-doped Al2O3 powders suppressed the crystallization of γ-(Er,Al)2O3 and θ-(Er,Al)2O3 phases. The enhancement of the PL properties by Y3+ co-doping is related to Er3+ concentration in the Er3+-doped Al2O3 powders. For the 1mol% Er3+-doped Al2O3 powders, co-doping Y3+ with the concentration up to 10mol% is incorporated in the mixture of γ and θ phases, resulting in an increase of both the intensity and full width at half maximum (FWHM) of PL spectra. The PL intensity for the 1mol% Er3+-doped Al2O3 powders by 10mol% Y3+ co-doping is enhanced by 50 times and almost 10 times higher than that of the 0.1mol%Er3+-doped Al2O3 powders, and the FWHM is enhanced by a gain of 15nm in comparison with those for the 1mol% Er3+-doped powders. However, for the 0.1mol% Er3+-doped Al2O3 powders, no significant change in the intensity and FWHM of PL spectra is observed with all the Y3+ incorporations. The improvement of intensity and FWHM of PL spectra for the Er3+-doped Al2O3 powders by Y3+ co-doping is attributed to the improved dispersion and disordered local structure around Er3+ in the matrix of the Er3+-doped Al2O3 powders, respectively.

CLC Number: