 
 Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (4): 445-451.DOI: 10.15541/jim20210270
Special Issue: 【能源环境】金属有机框架材料(202309)
• RESEARCH LETTER • Previous Articles Next Articles
					
													ZHANG Guoqing1,2( ), QIN Peng1(
), QIN Peng1( ), HUANG Fuqiang1,2,3(
), HUANG Fuqiang1,2,3( )
)
												  
						
						
						
					
				
Received:2021-04-26
															
							
																	Revised:2021-06-29
															
							
															
							
																	Published:2022-04-20
															
							
																	Online:2021-07-12
															
						Contact:
								QIN Peng, associate professor. E-mail: qinpeng@mail.sic.ac.cn;About author:ZHANG Guoqing (1992–), male, PhD candidate. E-mail: zgq201209@foxmail.com				
													Supported by:CLC Number:
ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage[J]. Journal of Inorganic Materials, 2022, 37(4): 445-451.
 
																													Fig. 1 Schematic diagram of in-situ growth of MAPbBr3 NCs from Pb-ZIF framework and optical images of Pb-ZIF (left under ambient light), and MAPbBr3 NCs@Pb-ZIF (right under UV light)
 
																													Fig. 2 (a) TEM image and (b) SAED pattern of Pb-ZIF powders SEM images of (c, d) Pb-ZIF and (e) MAPbBr3 NCs@Pb-ZIF powders, and (f) Elemental mappings of MAPbBr3 NCs@Pb-ZIF powder
 
																													Fig. 3 XPS spectra of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF samples (a) Survey XPS spectra; (b) Pb4f XPS spectra (The offset of Pb 4f peaks marked by an arrow); (c) Br3d XPS spectra of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF samples; (d) Br3d XPS spectrum of MAPbBr3 NCs@Pb-ZIF sample after etching
 
																													Fig. 4 (a) Absorption and (b) steady-state PL spectra of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF samples; (c) PL decay kinetics of MAPbBr3 NCs@Pb-ZIF sample; (d) Schematic confidential information encryption and decryption process based on Pb-ZIF and MAPbBr3 NCs@Pb-ZIF; (e) Optical images of the printed Pb-ZIF and MAPbBr3 NCs@Pb-ZIF patterns under UV excitation
 
																													Fig. 5 SEM images of (a) pristine commercial paper, (b) commercial paper after printed with Pb-ZIF ink, (c) commercial paper with MAPbBr3 NCs@Pb-ZIF NCs, (d) representative information encryption and decryption procedure, and (e) PL intensity of the printed MAPbBr3 NCs@Pb-ZIF patterns in the five cycles of encryption and decryption measurement
 
																													Fig. S1 X-ray diffraction patterns of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF powders The ideal diffraction peaks of MAPbBr3 were presented as red vertical line
 
																													Fig. S4 (a) UV-Vis absorption spectra of the printed Pb-ZIF and MAPbBr3 NCs@Pb-ZIF patterns, (b) steady-state PL spectra and (c) PL decay kinetics of the printed MAPbBr3 NCs@Pb-ZIF patterns
| τ1/ns | f1 | τ2/ns | f2 | τavg/ns | |
|---|---|---|---|---|---|
| Powder | 4.0 | 82.7% | 16.3 | 17.3% | 6.1 | 
Table S1 PL lifetime for MAPbBr3 NCs@Pb-ZIF powders
| τ1/ns | f1 | τ2/ns | f2 | τavg/ns | |
|---|---|---|---|---|---|
| Powder | 4.0 | 82.7% | 16.3 | 17.3% | 6.1 | 
| [1] | GAO Z, HAN Y, WANG F. Cooperative supramolecular polymers with anthracene-endoperoxide photo-switching for fluorescent anti- counterfeiting. Nature Communications, 2018, 9: 3977. DOI URL | 
| [2] | WU W, LIU H, YUAN J, et al. Nanoemulsion fluorescence inks for anti-counterfeiting encryption with dual-mode, full-color, long-term stability. Chemical Communications, 2021, 57(40): 4894-4897. DOI URL | 
| [3] | ZHANG Y, HUANG R, LI H, et al. Triple-mode emissions with invisible near-infrared after-glow from Cr3+-doped zinc aluminum germanium nanoparticles for advanced anti-counterfeiting applications. Small, 2020, 16(35):2003121. DOI URL | 
| [4] | DONG H, SUN L D, FENG W, et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano, 2017, 11(3): 3289-3297. DOI URL | 
| [5] | LU Y, ZHAO J, ZHANG R, et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photonics, 2014, 8(1): 32-36. DOI URL | 
| [6] | ZHOU L, FAN Y, WANG R, et al. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection. Angewandte Chemie International Edition, 2018, 57(39): 12824-12829. DOI URL | 
| [7] | YIN Z, LI H, XU W, et al. Local field modulation induced three- order upconversion enhancement: combining surface plasmon effect and photonic crystal effect. Advanced Materials, 2016, 28(13): 2518-2525. DOI URL | 
| [8] | ZHOU D, LIU D, XU W, et al. Synergistic upconversion enhancement induced by multiple physical effects and an angle-dependent anticounterfeit application. Chemistry of Materials, 2017, 29(16): 6799-6809. DOI URL | 
| [9] | REN W, LIN G, CLARKE C, et al. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Advanced Materials, 2020, 32(18):1901430. DOI URL | 
| [10] | BERA S, PRADHAN N. Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications. ACS Energy Letters, 2020, 5(9): 2858-2872. DOI URL | 
| [11] | YU X, WU L, YANG D, et al. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting. Angewandte Chemie International Edition, 2020, 59(34): 14527-14532. DOI URL | 
| [12] | HUANG X, GUO Q, KANG S, et al. Three-dimensional laser- assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano, 2020, 14(3): 3150-3158. DOI URL | 
| [13] | HUANG X, GUO Q, YANG D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics, 2020, 14(2): 82-88. DOI URL | 
| [14] | ZHANG C, WANG B, LI W, et al. Conversion of invisible metal- organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8: 1138. DOI URL | 
| [15] | SADEGHZADEH H, MORSALI A. Sonochemical synthesis and structural characterization of a nano-structure Pb (II) benzentricarboxylate coordination polymer: new precursor to pure phase nanoparticles of Pb (II) oxide. Journal of Coordination Chemistry, 2010, 63(4): 713-720. DOI URL | 
| [16] | SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High- quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 2015, 6: 7586. DOI URL | 
| [17] | SUN J Y, RABOUW F T, YANG X F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X=Cl, Br, and I) zeolite- Y composite phosphors for potential backlight display application. Advanced Functional Materials, 2017, 27(45):1704371. DOI URL | 
| [18] | PU Y C, FAN H C, LIU T W, et al. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis. Journal of Materials Chemistry A, 2017, 5(48): 25438-25449. DOI URL | 
| [19] | JUNG D H, PARK J H, LEE H E, et al. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61: 236-244. DOI URL | 
| [20] | BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites. Advanced Energy Materials, 2020, 10(26):1903659. DOI URL | 
| [21] | LI B, LONG R, XIA Y, et al. All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor. Angewandte Chemie International Edition, 2018, 57(40): 13154-13158. DOI URL | 
| [22] | MALGRAS V, TOMINAKA S, RYAN J W, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. Journal of the American Chemical Society, 2016, 138(42): 13874-13881. DOI URL | 
| [23] | YAN F, XING J, XING G, et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Letters, 2018, 18(5): 3157-3164. DOI URL | 
| [24] | ZHANG C, LI W, LI L. Metal halide perovskite nanocrystals in metal-organic framework host: not merely enhanced stability. Angewandte Chemie International Edition, 2021, 60(14): 7488-7501. DOI URL | 
| [1] | ZHANG Botao, SUN Tingting, WANG Lianjun, JIANG Wan. Inkjet Printing Preparation of AgCuTe Thermoelectric Thin Films [J]. Journal of Inorganic Materials, 2024, 39(12): 1325-1330. | 
| [2] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. | 
| [3] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. | 
| [4] | GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor [J]. Journal of Inorganic Materials, 2022, 37(6): 676-682. | 
| [5] | ZHANG Keyi, ZHENG Qi, WANG Lianjun, JIANG Wan. Preparation and Characterization of Ag2Se-based Ink Used for Inkjet Printing [J]. Journal of Inorganic Materials, 2022, 37(10): 1109-1115. | 
| [6] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. | 
| [7] | ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke. High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation [J]. Journal of Inorganic Materials, 2020, 35(4): 491-496. | 
| [8] | YANG Dandan, LI Xiaoming, MENG Cuifang, CHEN Jiaxin, ZENG Haibo. Research Progress on the Stability of CsPbX3 Nanocrystals [J]. Journal of Inorganic Materials, 2020, 35(10): 1088-1098. | 
| [9] | DAI Yan-Nan, YANG Shuai, SHEN Yang, SHAN Yong-Kui, YANG Fan, ZHAO Qing-Biao. Intense Yellow Emission from Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm) Phosphors Tuned through Full Range Doping [J]. Journal of Inorganic Materials, 2019, 34(11): 1210-1216. | 
| [10] | LI Gui-Fang, YANG Qian, WEI Yun-Ge. Synthesis and Photoluminescence Properties of Double Perovskite NaLaMgWO6: Eu3+ Red Phosphor [J]. Journal of Inorganic Materials, 2017, 32(9): 936-942. | 
| [11] | YAN Bo, PENG Ze-Yang, LV Bin, LIU Wei. Regrowth of CdTe Quantum Dots Induced by Circular Polarized Light and Its Effect on the Photoluminescence [J]. Journal of Inorganic Materials, 2017, 32(12): 1321-1326. | 
| [12] | ZHUO Shi-Yi, LIU Xi, GAO Pan, YAN Cheng-Feng, SHI Er-Wei. Luminescence of Donor-acceptor-pair in Fluorescent 4H-SiC Doped with Nitrogen, Boron and Aluminum [J]. Journal of Inorganic Materials, 2017, 32(1): 51-55. | 
| [13] | YANG Xiu-Chun. Influences of Ion Exchange and Thermal Treatment on Photoluminescence of Noble Metal Doped Silicate Glasses [J]. Journal of Inorganic Materials, 2016, 31(10): 1039-1045. | 
| [14] | YANG Feng-Jiu, LU Meng-Chen, ZHANG Xin, ZHANG Yan, WANG Lian-Jun, JIANG Wan. Facile Hydrothermal Synthesis of Oil-Soluble PbSe Quantum Dots [J]. Journal of Inorganic Materials, 2015, 30(7): 774-778. | 
| [15] | HAN Bin, WANG Yi-Fei, LIU Qian, HUANG Qing. Microwave Assisted Sintering and Photoluminescence Properties of Ba3Si6O12N2:Eu2+ Green Phosphors [J]. Journal of Inorganic Materials, 2015, 30(3): 330-336. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||