Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (5): 463-468.DOI: 10.3724/SP.J.1077.2012.00463
• Orginal Article • Previous Articles Next Articles
WANG Yan-Zhi1, 2, ZHAO Min-Shou1, 2
Received:2011-06-14
Revised:2011-08-22
Published:2012-05-10
Online:2012-03-31
CLC Number:
WANG Yan-Zhi, ZHAO Min-Shou. Structure and Electrochemical Characteristics of Ti-V-based Solid Solution/AB5-type La-Mg-based Alloy Composite Hydrogen Storage Material[J]. Journal of Inorganic Materials, 2012, 27(5): 463-468.
Add to citation manager EndNote|Ris|BibTeX
| Sample | Phase | Lattice parameter | Cell volume /nm3 | |
|---|---|---|---|---|
| a / nm | c / nm | |||
| TVS alloy | BCC | 0.2969 | - | 0.02617 |
| C14 Laves | 0.4948 | 0.8093 | 0.17160 | |
| COM alloy | BCC | 0.2974 | - | 0.02630 |
| C14 Laves | 0.4943 | 0.8069 | 0.17070 | |
Table 1 Lattice parameters of BCC and C14 Laves phase in TVS and COM alloy
| Sample | Phase | Lattice parameter | Cell volume /nm3 | |
|---|---|---|---|---|
| a / nm | c / nm | |||
| TVS alloy | BCC | 0.2969 | - | 0.02617 |
| C14 Laves | 0.4948 | 0.8093 | 0.17160 | |
| COM alloy | BCC | 0.2974 | - | 0.02630 |
| C14 Laves | 0.4943 | 0.8069 | 0.17070 | |
| Phase | Composition / at% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Ti | Zr | V | Cr | Ni | Mg | Al | Co | La | |
| BCC phase | 4.95 | 10.04 | 38.03 | 14.86 | 7.39 | 12.02 | 10.08 | 2.62 | - |
| C14 Laves phase | 26.45 | 28.54 | 14.97 | 2.77 | 9.56 | 8.96 | 7.78 | 0.98 | - |
| Secondary phase | 1.22 | 29.80 | 31.54 | 6.34 | 9.94 | 7.49 | 6.39 | 1.18 | 6.10 |
Table 2 Phase compositions of COM alloy
| Phase | Composition / at% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Ti | Zr | V | Cr | Ni | Mg | Al | Co | La | |
| BCC phase | 4.95 | 10.04 | 38.03 | 14.86 | 7.39 | 12.02 | 10.08 | 2.62 | - |
| C14 Laves phase | 26.45 | 28.54 | 14.97 | 2.77 | 9.56 | 8.96 | 7.78 | 0.98 | - |
| Secondary phase | 1.22 | 29.80 | 31.54 | 6.34 | 9.94 | 7.49 | 6.39 | 1.18 | 6.10 |
| Constituent element | Concentration in KOH / (mg·L-1) | |||
|---|---|---|---|---|
| 50 cycles | 100 cycles | |||
| TVS | COM | TVS | COM | |
| Ti | 0.031 | 0.024 | 0.084 | 0.117 |
| Zr | 13.524 | 12.693 | 27.393 | 19.742 |
| V | 31.052 | 26.961 | 74.094 | 54.263 |
| La | - | - | - | 0.003 |
| Mg | - | - | - | 0.004 |
Table 3 Concentration of main constituent element dissolved in KOH electrolyte for TVS and COM alloy electrode
| Constituent element | Concentration in KOH / (mg·L-1) | |||
|---|---|---|---|---|
| 50 cycles | 100 cycles | |||
| TVS | COM | TVS | COM | |
| Ti | 0.031 | 0.024 | 0.084 | 0.117 |
| Zr | 13.524 | 12.693 | 27.393 | 19.742 |
| V | 31.052 | 26.961 | 74.094 | 54.263 |
| La | - | - | - | 0.003 |
| Mg | - | - | - | 0.004 |
| [1] | Feng F, Geng M, Northwood D O. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int. J. Hydrogen Energy, 2001, 26(7): 725-734. |
| [2] | Liu Y, Wang Y, Xiao L, et al. Study on the structure and electrochemical performance of AB3-type hydrogen storage composite electrode material. Int. J. Hydrogen Energy, 2007, 32(17): 4220-4224. |
| [3] | Singh B K, Cho S W, Bartwal K S. Effect on structure and hydrogen storage characteristics of composite alloys Ti0.32Cr0.43V0.25 with LaNi5 and rare-earth elements La, Ce, Y. J. Alloys Compd., 2009, 478(1/2): 785-788. |
| [4] | Zhao X, Ma L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrogen Energy, 2009, 34(11): 4788-4796. |
| [5] | Zhang W, Zhu Y, Yang C, et al. Effects of metal additive on electrochemical performances of Mg-based hydrogen storage materials prepared by hydriding combustion synthesis and subsequent mechanical milling (HCS+MM). Int. J. Hydrogen Energy, 2010, 35(15): 8241-8246. |
| [6] | Tsukahara M, Takahashi K, Mishima T, et al. Phase structure of V-based solid solutions containing Ti and Ni and their hydrogen absorption–desorption properties. J. Alloys Compd., 1995, 224(1): 162-167. |
| [7] | Tsukahara M, Takahashi K, Mishima T, et al. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0≤x≤0.75). J. Alloys Compd., 1995, 226(1): 203-207. |
| [8] | Tsukahara M, Takahashi K, Mishima T, et al. Vanadium-based solid solution alloys with three dimensional network structure for high capacity metal hydride electrodes. J. Alloys Compd., 1997, 253-254: 583-586. |
| [9] | Kuriyama N, Tsukahara M, Takahashi K, et al. Deterioration behavior of a multiphase vanadium-based solid solution alloy electrode. J. Alloys Compd., 2003, 356-357: 738-741. |
| [10] | Zhang Q A, Lei Y Q, Yang X G, et al. Phase structure and electrochemical properties of Cr-added V3TiNi0.56Hf0.24Mn0.15 alloys. Int. J. Hydrogen Energy, 2000, 25(10): 977-981. |
| [11] | Zhang Q A, Lei Y Q, Yang X G, et al. Effects of annealing treatment on phase structures, hydrogen absorption–desorption characteristics and electrochemical properties of a V3TiNi0.56Hf0.24Mn0.15Cr0.1 alloy. J. Alloys Compd., 2000, 305(1/2): 125-129. |
| [12] | Kim J H, Lee H, Lee P S, et al. A study on the improvement of the cyclic durability by Cr substitution in V–Ti alloy and surface modification by the ball-milling process. J. Alloys Compd., 2003, 348(1/2): 293-300. |
| [13] | Chai Y J, Yin W Y, Li Z Y, et al. Structure and electrochemical characteristics of Ti0.25–xZrxV0.35Cr0.1Ni0.3(x=0.05–0.15) alloys. Intermetallics, 2005, 13(11): 1141-1145. |
| [14] | Qiao Y Q, Zhao M S, Zhu X J, et al. Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3(RE= Ce, Dy) hydrogen storage electrode alloys. Int. J. Hydrogen Energy, 2007, 32(15): 3427-3434. |
| [15] | Yonkeu A L, Swainson I P, Dufour J, et al. Kinetic investigation of the catalytic effect of a body centered cubic-alloy TiV1.1Mn0.9(BCC) on hydriding/dehydriding properties of magnesium. J. Alloys Compd., 2008, 460(1/2): 559-564. |
| [16] | Chu H L, Zhang Y, Sun L X, et al. The electrochemical properties of Ti0.9Zr0.2Mn1.5Cr0.3V0.3-x wt% La0.7Mg0.25Zr0.05Ni2.975Co0.525 (x=0,5,10) hydrogen storage composite electrodes. Int. J. Hydrogen Energy, 2007, 32(12): 1898-1904. |
| [17] | Chu H, Zhang Y, Sun L, et al. Structure, morphology and hydrogen storage properties of composites prepared by ball milling Ti0.9Zr0.2Mn1.5Cr0.3V0.3 with La-Mg-based alloy. Int. J. Hydrogen Energy, 2007, 32(15): 3363-3369. |
| [18] | Zhang X B, Chai Y J, Yin W Y, et al. Crystal structure and electrochemical properties of rare earth non-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery. J. Solid State Chem., 2004, 177(7): 2373-2377. |
| [19] | Wang Y Z, Zhao M S, Li S C, et al. Structure and electrochemical characteristics of melted composite Ti0.10Zr0.15 V0.35Cr0.10Ni0.30–LaNi5 hydrogen storage alloys. Electrochim. Acta, 2008, 53(27): 7831-7837. |
| [20] | Wang Y Z, Zhao M S. Structure and electrochemical characteristics of LaNi5-Ti0.10Zr0.16V0.34Cr0.10Ni0.30 composite alloy electrode. J. Rare Earths, 2010, 28(5): 774-780. |
| [21] | Seo C Y, Choi S J, Choi J, et al. Effect of V and Zr on the electrochemical properties of La-based AB5-type metal hydride electrodes. J. Alloys Compd., 2003, 351(1/2): 255-263. |
| [22] | Park H Y, Chang I, Cho W I, et al. Electrode characteristics of the Cr and La doped AB2-type hydrogen storage alloys. Int. J. Hydrogen Energy, 2001, 26(9): 949-955. |
| [23] | Qiao Y Q, Zhao M S, Li M Y, et al. Microstructure and electrochemical performance of Ti0.17Zr0.08V0.34Pd0.01Cr0.1Ni0.3 electrode alloy. Scripta Materialia, 2006, 55(3): 279-282. |
| [24] | 杨桂玲, 王 春, 杨晓民, 等(YANG Gui-Ling, et al). 非金属与金属的协同作用对镁基储氢合金电化学性能的影响. 物理化学学报(Acta Phys. Chem. Sin.), 2010, 26(4): 833-839. |
| [25] | Si T Z, Pang G., Liu D M, et al. Structural investigation and hydrogen storage properties of Ca3-xLaxMg2Ni13 alloys. Int. J. Hydrogen Energy, 2010, 35(3): 1267-1272. |
| [26] | Dong Z, Wu Y, Ma L, et al. Microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33-xCaxNi2.75Co0.25 (x= 0–0.15) electrode alloys. Int. J. Hydrogen Energy, 2011, 36(4): 3050-3055. |
| [27] | Iwakura C, Kajiya Y, Yoneyama H, et al. Self-discharge mechanism of nickel–hydrogen batteries using metal hydride anodes. J. Electrochem. Soc., 1989, 136(5): 1351-1355. |
| [28] | Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Compd., 1993, 202(1/2): 183-197. |
| [29] | Zheng G, Popov B N, White R E. Electrochemical determination of the diffusion coefficient of hydrogen through a LaNi4.25Al0.75 electrode in alkaline aqueous solution. J. Electrochem. Soc., 1995, 142(8): 2695-2698. |
| [1] | LI Yan-Hong, QIU Xin-Ping, LIU Yuan. Characteristics of Sb Film Electrode Prepared by Vacuum Depositing [J]. Journal of Inorganic Materials, 2012, 27(7): 746-750. |
| [2] | TIAN Xiao, Tegus O, HAI Shan, YAO Zhan-Quan. Effects of Rapid Quenching on Electrochemical Properties of MlNi3.55Co0.75Mn0.4Al0.3/5wt% Mg2Ni Composite Hydrogen Storage Alloy [J]. Journal of Inorganic Materials, 2012, 27(11): 1179-1184. |
| [3] | DING Hui-Ling1,2, HAO Jian-Sheng1,3, ZHU Xi-Lin2,3, LI Yuan2, HAN Shu-Min1,2, ZHANG Jing-Wu1. Electrochemical Performance Studies on Nickel-cobalt Electroplated La-Mg-Ni-based Hydrogen Storage Alloys [J]. Journal of Inorganic Materials, 2010, 25(6): 647-652. |
| [4] |
CHEN Yi,SHI Li-Yi,YUAN Shuai,WU Jun,ZHANG Mei-Hong,FANG Jian-Hui.
Photoelectrocatalytic Degradation of Methylene Blue by TiO2 Nanotube Array Prepared by Anodic Oxidation [J]. Journal of Inorganic Materials, 2009, 24(4): 680-684. |
| [5] | ZHOU Yi,HUANG Ke-Long,ZHU Zhi-Ping,YANG Bo,XIA Chang-Bin,XIAO Han-Ning. Preparation and Photocatalysis Activity of Eu2+/Gd3+ codoped Nano-TiO2 Multiplex Photocatalyst from Sol-Gel Process Catalyzed with Acid [J]. Journal of Inorganic Materials, 2008, 23(5): 1085-1088. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||