[1] Hopkins F K. Nonlinear materials extend the range of high-power lasers. Laser Focus World. 1995, 31(7): 87-93.
[2] 董春明, 王善朋, 陶绪堂. 中红外非线性光学晶体研究进展. 人工晶体学报, 2006, 35 (4): 785-789.
[3] Lind M D, Grant R W. Structural dependence of birefringence in the chalcopyrite structure. refinement of the structural parameters of ZnGeP2 and ZnSiAs2. Journal of Chemical Physics, 1973, 58(1): 357-362.
[4] Schunemann P G, Zawilski K T, Pollak T M. Horizontal gradient freeze growth of AgGaGeS4 and AgGaGe5Se12. Journal of Crystal Growth, 2006, 287(2): 248-251.
[5] Zawilski Kevin T, Schunemann Peter G, Scott D Setzler, et al. Advances in Single Crystal ZnGeP2 Processing for High Energy Applications. IEEE Xplore, 2008, 1-2.
[6] 王克强, 韩 隆, 王建军, 等. 3-5 μm 固体激光器. 红外与激光工程, 2006, 35: 169-173.
[7] Yao Baoquan, Ju Youlun, Wang Yuezhu, et al. Performance evaluation of ZnGeP2 optical parametric oscillator pumped by a Q-switched Tm, Ho:GdVO4 laser. Chinese Optics Letters, 2008, 6(1): 68-70.
[8] 王 平, 柴金华. 中红外磷锗锌光参量振荡器的参量对比与分析. 激光与红外, 2009, 2(39): 123-127.
[9] Tsveybak I, Rudorman W, Wood G, et al. Native defect related optical properties of ZnGeP2. Applied Physics Letters, 1994, 65(22): 2759-2761.
[10] Jiang X S, Miao M S, Lambrecht W R L. Theoretical study of the phosphorus vacancy in ZnGeP2. Physical Review B, 2006, 73(19): 193203-1-4.
[11] Brudnyi V N, Voevodin V G, Grinyaev S N. Deep levels of intrinsic point defects and the nature of "anomalous" optical absorption in ZnGeP2. Physics of the Solid State. 2006, 48(11): 2069-2083.
[12] Zawilski K T, Schunemann P G, Setzler S D, et al. Large aperture single crystal ZnGeP2 for high-energy applications. Journal of Crystal Growth, 2008, 310(7/8/9): 1891-1896.
[13] Verozubova G A, Gribenyukov A I. Growth of ZnGeP2 crystals from melt. Crystallography Reports, 2008, 53(1): 158-163.
[14] 吴海信, 倪友保, 耿 磊, 等. 红外非线性晶体ZnGeP2的生长及品质研究. 人工晶体学报, 2007, 36(3): 507-511.
[15] Zhao Xin, Zhu Shifu, Zhao Beijun, et al. Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method. Journal of Crystal Growth, 2008, 311(1): 190-193.
[16] Fiechter S, Castleberry R H, Angelov M, et al. Melt growth of ZnGeP2: homogeneity range and thermochemical properties. Materials Research Society Symposium Proceedings, 1997, 450: 315-320.
[17] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations, and the CASTEP code. Journal of Physics: Condens. Matter, 2002, 14(11): 2717-2743.
[18] Lind M D, Grant R W. Structural dependence of birefringence in the chalcopyrite structure. brefinement of the structural parameters of ZnGeP2 and ZnSiAs2. Journal of Chemistry Physics, 1973, 58(1): 357-362.
[19] Halliburton L E, Edwards G J, Scripsick M P, et al. Electron-
nuclear double resonance of the zinc vacancy in ZnGeP2. Applied Physics Letters, 1995, 66(20): 2670-2672.
[20] Giles N C, Halliburton L E, Schunemann P G. Optical and magnetic resonance characterization of donors and acceptors in ZnGeP2. Proceedings of SPIE, 1995, 2379: 175-184.
[21] Gehlhoff W, Azamat D, Hoffmann A, et al. Structure and energy level of native defects in as-grown and electron-irradiated zinc germanium diphosphide studied by EPR and photo-EPR. Journal of Physics and Chemistry of Solids, 2003, 64(9/10): 1923-1927.
[22] Zapol P, Pandey R, Ohmer M, et al. Atomistic calculations of defects in ZnGeP2. Journal of Applied Physics, 1996, 79(2): 671-675.
[23] Giles N C, Halliburton L E, Schunemann P G, et al. Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2. Applied Physics Letters, 1995, 66(14): 1758-1760.
[24] Setzler S D, Giles N C, Halliburton L E, et al. Electron paramagnetic resonance of a cation antisite defect in ZnGeP2. Applied Physics Letters, 1999, 74(9): 1218-1220.
[25] Kaufmann U, Schneider J, R-uber A. ESR detection of antisite lattice defects in GaP, CdSiP2 and ZnGeP2. Applied Physics Letters, 1976, 29(5): 312-313. |