研究论文

真空紫外激发下Pr 3+掺杂的几种硼酸盐体系的低温光谱特性

  • 符义兵 ,
  • 张国斌 ,
  • 吴文清 ,
  • 戚泽明 ,
  • 石军岩 ,
  • 施朝淑
展开
  • 1. 中国科学技术大学国家同步辐射实验室, 合肥 230029; 2. 中国科学技术大学物理系, 合肥 230026

收稿日期: 2006-04-20

  修回日期: 2006-06-05

  网络出版日期: 2007-03-20

Low Temperature Spectral Properties of Several Pr3+ Doped Borates under VUV Excitation

  • FU Yi-Bing ,
  • ZHANG Guo-Bin ,
  • WU Wen-Qing ,
  • QI Ze-Ming ,
  • SHI Jun-Yan ,
  • SHI Chao-Shu
Expand
  • 1. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; 2. Department of physics, University of Science and Technology of China, Hefei 230026, China

Received date: 2006-04-20

  Revised date: 2006-06-05

  Online published: 2007-03-20

摘要

研究了SrB4:Pr 3+, LaB3O6:Pr 3+ 及LaMgB5O10:Pr 3+低温下的光谱. 从发射谱上看这三种发光材料都可以产生光子级联发射, 对照Pr 3+离子的能级图对各发射峰进行了指认. 因为硼酸盐体系中较高的声子振动能量导致了3 P01D2能级间的无辐射弛豫, 所以级联发射的第二步过程3 p 03HJ发光非常微弱或基本没有. 在LaB3O6 及LaMgB6O10 的激发谱上除了4f5d吸收带外还观测到了Pr3+离子的3H41S0跃迁, 由此在这两种材料中确定了Pr 3+离子的1S0能级相对于最低的4f5d能级的位置.

本文引用格式

符义兵 , 张国斌 , 吴文清 , 戚泽明 , 石军岩 , 施朝淑 . 真空紫外激发下Pr 3+掺杂的几种硼酸盐体系的低温光谱特性[J]. 无机材料学报, 2007 , 22(2) : 373 -376 . DOI: 10.3724/SP.J.1077.2007.00373

Abstract

Low temperature spectra of SrB4O7:Pr3+, LaB3O6:Pr3+ and LaMgB5O10:Pr3+
were investigated by synchrotron radiation VUV light. Under VUV excitation,
photon cascade emission was found in SrB4O7:Pr3+, LaB3O6:Pr3+ and LaMgB5O10:Pr3+. All peaks in emission spectra were assigned. Because high phonon energy in borates results in non-radiative relaxation between 3P0 and 1D2 states of Pr3+, the second step emission 3P0→3HJ is very low in SrB4O7:Pr3+ and even is absent in LaB3O6:Pr3+ and LaMgB5O10:Pr3+. In the excitation spectra of LaB3O6:Pr3+ and LaMgB5O10:Pr3+, along with the 4f5d absorption bands, a weak line due to 3H41S0 transition also was detected. From the position of 3H41S0 transition, the energy difference of 1S0 state and the lowest 4 f5d state was determined.

参考文献

[1] Sommerdijk J L, Bril A, Jager A W. J. Lumin., 1974, 8: 341--343.
[2] Pieper W W, de Luca J A, Ham F S. J. Lumin., 1974, 8: 344--348.
[3] 杨智, 林建华, 苏勉曾, 等. 化学学报, 2001, 59 (9): 1372--1375.
[4] Sokolska I, Kuck S. Chem. Phys., 2001, 270 (2): 355--362.
[5] Kuck S, Sokolska I. Chem. Phys. Lett., 2002, 364 (3-4): 273--278.
[6] Kuck S, Sokolska I. J. Electrochem. Soc., 2002, 149 (2): J27--J30.
[7] Srivastava A M, Doughty D A, Beers W W. J. Electrochem. Soc., 1997, 144 (7): L190--L192.
[8] Srivastava A M, Doughty D A, Beers W W. J. Electrochem. Soc., 1996, 143 (12): 4113--4116.
[9] Srivastava A M, Beers W W. J. Lumin., 1997, 71 (4): 285--290.
[10] Kuck S, Sololska I, Henke M, et al. J. Lumin., 2003, 102 (5): 176--181.
[11] Makhov V N, Khaidukov N M, Lo D, et al. J. Lumin., 2003, 102 (5): 638--643.
[12] Vink A, Dorenbos P, de Haas J, et al. J. Phys. : Condens. Matt., 2002, 14 (38): 8889--8899.
[13] van der Kolk E, Dorenbos P, van Eijk C W E. Opt. Commun., 2001, 197 (4-6): 317--326.
[14] 王育华, 远腾忠, 都云昆, 等(WANG Yu-Hua et al). 无机材
料学报(Journal of Inorganic Materials), 2004, 19 (4): 772--778.
[15] 刘晓瑭, 石春山, 庄国雄, 等(LIU Xiao-Tang et al). 无机
材料学报(Journal of Inorganic Materials), 2005, 20 (2): 475--478.
[16] van Dijk J M, Schuurmans M F. J. Chem. Phys., 1983, 78 (9): 5317.
[17] Kuck S, Sokolska I, Henke M, et al. Phys. Rev. B, 2005, 71 (16): 165112-1-15.
[18] Chen Y H, Shi C S, Yan W Z, et al. Appl. Phys. Lett., 2006, 88 (6): 061906.1-3.
文章导航

/