研究论文

泡沫镍负载TiO2和TiO2/Al2O3薄膜的光催化性能研究

  • 胡海 ,
  • 肖文浚 ,
  • 袁坚 ,
  • 施建伟 ,
  • 上官文峰
展开
  • 上海交通大学燃烧与环境技术研究中心, 上海 200030

收稿日期: 2006-04-03

  修回日期: 2006-07-17

  网络出版日期: 2007-03-20

Photocatalytic Activities of TiO2 and TiO2/Al2O3 Films Coated on Foam Nickel Substrates

  • HU Hai ,
  • XIAO Wen-Jun ,
  • YUAN Jian ,
  • SHI Jian-Wei ,
  • SHANGGUAN Wen-Feng
Expand
  • Research Center for Combustion and Environment Technology, Shanghai Jiaotong University, Shanghai 200030, China

Received date: 2006-04-03

  Revised date: 2006-07-17

  Online published: 2007-03-20

摘要

以泡沫镍为载体, Al 2O3 作为过渡中间层, 用溶胶-凝胶法在泡沫镍上负载锐钛矿相的TiO2薄膜, 制成泡沫金属基的TiO2和TiO2/Al2O3光催化剂, 利用XRD和FE-SEM等测试手段对其性质进行表征, 用乙醛气体的光催化降解测试其活性. 研究表明: 泡沫镍负载的TiO2和TiO2/Al2O3薄膜具有良好的光催化活性, 特别是TiO2/Al2O3薄膜具有更高的催化活性. 这是由于负载的Al2O3 过渡中间层增大了载体的比表面积, 具有吸附浓缩作用, 同时也增加了负载光催化剂的活性位数量. 实验表明: TiO2/Al2O3薄膜的光催化活性和稳定性较单一的TiO2薄膜有非常显著的提高.

本文引用格式

胡海 , 肖文浚 , 袁坚 , 施建伟 , 上官文峰 . 泡沫镍负载TiO2和TiO2/Al2O3薄膜的光催化性能研究[J]. 无机材料学报, 2007 , 22(2) : 363 -368 . DOI: 10.3724/SP.J.1077.2007.00363

Abstract

Anatase TiO2 and TiO2/Al2O3 films were successfully prepared on foam nickel substrates by sol-gel technique. The characteristics and photocatalytic activities of the TiO2 and TiO2/Al2O3 films were investigated by XRD, FE-SEM, etc and by photocatalytic degradation reactions of gaseous acetaldehyde under ultraviolet light irradiation, respectively. The TiO2 and TiO2/Al2O3 films coated on foam nickel substrates display a high photocatalytic activity for the degradation of acetaldehyde. Compared with the onefold TiO2 films coated on foam nickel, the TiO2/Al2O3 films show much higher photocatalytic activities. It is confirmed that photocatalytic activities and stabilities are enhanced by coating Al2O3 as transition layer on foam nickel, which increase the specific surface areas of substrate surface and absorption property, resulting in increase in the photocatalytic activity.

参考文献

[1] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995, 95: 69--96.
[2] 罗仲宽, 宋力昕, 蔡弘华, 等(LUO Zhong-Kuan, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (1): 145--150.
[3] Tryk D A, Fujishima A, Honda K. Electrochim. Acta, 2000, 45: 2363--2376.
[4] Sproul W D, Graham M E, Rudnik P J, et al. Surf. Coat. Tech., 1997, 89: 10--15.
[5] Zhang Q M, Griffin G L. Thin Solid Films, 1995, 263: 65--71.
[6] Yu J G, Zhao X J, Zhao Q N. Thin Solid Films, 2000, 379: 7--14.
[7] Yu C J, Yu J G, Zhang L Z, et al. J. Photoch. Photobio. A: Chem, 2002, 148: 263--271.
[8] 张剑平, 孙召梅, 施利毅, 等(ZHANG Jian-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1243--1249.
[9] Richardson J T, Garrait M, Hung J K. Appl. Catal. A-Gen., 2003, 2550: 69--82. [10] Peng Y, Richardson J T. Appl. Catal. A-Gen., 2004, 2660: 235--244.
[11] Buciuman F C, Czarnetzki B K. Catal. Today, 2001, 69: 337--342.
[12] Hwang K S, Zhu H Y, Lu G Q. Catal. Today, 2001, 68: 183--190.
[13] Zhe D, H Xijun, Po L, et al. Catal. Today, 2001, 68: 173--182.
[14] Molina A I, Robles J M, Garc$\acutei$a P B. J. Catal. 2004, 225: 479--488.
[15] Atienzar P, Corma A, Garcia H, et al. Chem. Mater. 2004, 16: 982--987.
[16] 李佑稷, 李效东, 李君文, 等(LI You-Ji, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 291--298.
[17] Leng W H, Liu H, Cheng S A, et al. J. Photoch. Photobio. A: Chem, 2000, 131: 125--132.
[18] Liu H, Cheng S A, Zhang J Q, et al. Chemosphere, 1999, 38 (2): 283--292.
[19] Takeda N, Torimoto T, Sampath S, et al. J. Phys. Chem., 1995, 99 (24): 9986--9991.
[20] Takeda N, Ohtani M, Torimoto T, et al. J. Phys. Chem. B, 1997, 101: 2644--2649.
[21] Uchida H, Itoh S, Yoneyama H. Chem. Lett. 1993. 1995--1998.
[22] Torimoto T, Ito S, Kuwabata S, et al. Environ. Sci. Technol. 1996, 30: 1275--1281.
[23] Sopyan I, Watanabe M, Fujishima A, et al. J. Photoch. Photobio. A: Chem, 1996, 98: 79--86.
文章导航

/