研究论文

AlN与Mo-Ni-Cu活性封接的微观结构和性能分析

  • 张玲艳 ,
  • 秦明礼 ,
  • 曲选辉 ,
  • 陆艳杰 ,
  • 张小勇
展开
  • 1. 北京科技大学 粉末冶金研究所, 北京 100083; 2. 北京有色金属研究院, 北京 100088

收稿日期: 2008-08-19

  修回日期: 2008-10-30

  网络出版日期: 2009-05-20

Microstructure and Mechanical Property Analysis of AlN Ceramic with Mo-Ni-Cu Alloy Active Brazed Joints

  • ZHANG Ling-Yan ,
  • QIN Ming-Li ,
  • QU Xuan-Hui ,
  • LU Yan-Jie ,
  • ZHANG Xiao-Yong
Expand
  • 1. Institute of Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; 2. General Research Institute for Nonferrous Metals, Beijing 100088, China

Received date: 2008-08-19

  Revised date: 2008-10-30

  Online published: 2009-05-20

摘要

AlN陶瓷是一种性能优良的电子封装材料,但不容易与金属直接连接在一起.实验采用98(Ag28Cu)2Ti活性焊料, 在真空条件下实现了AlN陶瓷与MoNiCu合金的活性封接.利用EBSD、EDS、XRD方法研究了焊接区域以及剪切试样断裂表面的微观结构和相组成,测定了焊区的力学性能和气密性.研究结果显示:在AlN陶瓷界面上有TiN生成,说明陶瓷与焊料之间是一种化学键合,而在MoNiCu合金的界面上有少量的NiTi金属间化合物存在.剪切后试样的断裂面上有TiN和AlN,说明断裂发生在靠近陶瓷的焊层区域.焊接试样性能优良:气密性达到1.0×10-11Pa·m3/s,平均抗弯强度σ=78.55MPa,剪切强度στ=189.58MPa.

本文引用格式

张玲艳 , 秦明礼 , 曲选辉 , 陆艳杰 , 张小勇 . AlN与Mo-Ni-Cu活性封接的微观结构和性能分析[J]. 无机材料学报, 2009 , 24(3) : 636 -640 . DOI: 10.3724/SP.J.1077.2009.00636

Abstract

AlN ceramic is a highperformance electronic packaging material, but it is difficult to joint with metals directly. AlN ceramic and Mo-Ni-Cu alloy was brazed using 98(Ag28Cu)2Ti active filler alloy in vacuum. EBSD, EDS and XRD were used to study the microstructure and phases of bonding area and the surface of the sheared sample. The mechanical properties and hermeticity performance were measured. It is found that TiN exists in the interface of AlN ceramic, which indicate that there is a chemical bond between ceramic and filler metal, but there is a few of Ni-Ti intermetallics in the interface of MoNi-Cu alloy. TiN and AlN are found on the sheared fracture surface, which indicate that fracture occurrs from the bonding area near the AlN ceramic. The sample has good performance with gas leakage rate of 1.0×10-11Pa·m3/s, average bending strength of σ=78.55MPa and shear strength of στ=189.58MPa.

参考文献

1]Mandal S, Ray A K, Ray A K. Materials Science and Engineering A, 2004, 383(2): 235-244.
[2]Slack G A, Tranzili R A. J. Phy. Chem. Solids, 1987, 48(7): 641-648.
[3]刘 鑫,张小勇,陆艳杰. 真空电子技术, 2007, (4): 56-58.
[4]鲁燕萍,高陇桥. 真空科学与技术, 2000, 20(3): 190-193.
[5]Zhu S, Wosiński W. Journal of Materials Processing Technology, 2001, 109(3): 277-282.
[6]李增峰,汤慧萍,刘海彦. 粉末冶金材料科学与工程, 2006, 11(3): 185-190.
[7]曲仕尧,邹增大,王新洪. 焊接学报, 2003, 24(4): 13-16.
[8]Arróyave R, Eagar T W. Acta Meterialia, 2003, 51(16): 4871-4880.
[9]ZHANG Chunguang, QIAO Guanjun, JIN Zhihao. Journal of the European Ceramic Society, 2002, 22(13): 2181-2186.
[10]Taranets N Y, Jones H. Materials Science and Engineering A, 2004, 379(1-2): 251-257.
[11]GómezGarcía D, GutiérrezMora F, GallardoLópez , et al. Journal of the European Ceramic Society, 2007, 27(11): 3307-3310.
[12]Kim T W, Chang H, Park S W. Ceramic Engineering and Science Proceedings, 2002, 23(4):843-848.
[13]Dezellus O, Andrieux J, Bosselet F, et al. Materials Science and Engineering A, 2008, 495(1-2): 254-258.
文章导航

/