利用脉冲激光沉积的方法在Si(100)氧化成SiO2的基片上制备了(La2/3Sr1/3MnO3)x/(ZnO)1-x混合物薄膜,研究了薄膜的磁电阻和伏安特性. X射线衍射分析表明,除了衬底SiO2的衍射峰以外,分别出现了La2/3Sr1/3MnO3(101)的衍射峰和ZnO(002)的衍射峰,且它们形成了两相共存体系. 实验表明:x=0.3的混合物薄膜表现为半导体导电特性,而x=0.4的样品则出现了典型的金属绝缘相变. 所制备的样品表现出了低场磁电阻效应和非线性伏安特性. 在0.7T磁场的作用下,x=0.3的样品在温度为60K时取得的最大磁电阻值为28.8%. 通过对伏安关系拟合表明,在La2/3Sr1/3MnO3和ZnO颗粒之间存在一定的耗尽层,且产生了界面缺陷态.
agnetroresistance and currentvoltage characteristics of the composite (La2/3Sr1/3MnO3)x/(ZnO)1-x films prepared by the pulsed laser deposition method on Si(100) substrates oxidized by SiO2 were investigated. XRD patterns indicate that ZnO and LSMO have (002) and (101) dominant orientations, respectively, and they form the coexisting system of two phases. Experimental results show the film with x=0.3 favors a semiconductive conduction and the film with x=0.4 exhibits the typical insulatormetal (I-M) transition. The films have the low field magnetoresistance(LFMR) effect and the nonlinear currentvoltage characteristics. The maximum LFMR value of the film with x=0.3 is about 28.8% at T=60K under an applied magnetic field of about 0.7T. The currentvoltage fitting shows that a great number of interface states appear at the depletion between La2/3Sr1/3MnO3 and ZnO grains due to the mismatch of the lattice.
1]Jin S, Tuefel T H, Fastnacht R A, et al. Science, 1994, 264(5157): 413-417.
[2]赵省贵,陈长乐,金克新(ZHAO ShengGui, et al).无机材料学报(Journal of Inorganic Materials), 2008,23(2):281-285.
[3]Jin K X, Chen C L, Wang S L, et al. J. Appl. Phys., 2004, 96(3):1537-1539.
[4]Milner A, Gerber A, Grolsman B, et al. Phys. Rev. Lett., 1996, 76(3): 475-478.
[5]Coey J M D, Berkowlt A E, Barcells L,et al. Phys. Rev. Lett., 1998, 80(17):3815-3818.
[6]Hwang J Y, Cheong S W. Science, 1997, 278(5343):1607-1609.
[7]刘俊明,王克锋.物理学进展,2005, 25(1): 82-130.
[8]Xiao Q J, Jiang J S, Chien C L. Phys. Rev. Lett., 1992, 68(25):3749-3752.
[9]Berkowitz A E, Mitchell J R, Carey M J, et al. Phys.Rev.Lett., 1992, 68(25): 3745-3748.
[10]Gieny B, Chamberod A, Genin J B, et al. J.Magn.Magn.Mater., 1993, 126(1-3): 433-436.
[11]Wang J Q, Xiao G. Phys.Rev.B, 1994,49(6):3982-3996.
[12]Chien C L. Ann.Rev.Mater.Sci., 1995, 25:129-160.
[13]都有为.物理学进展,1997, 17(2):180-200.
[14]Balcells L, Carrillo A E, Martinesz B, et al. Appl. Phys. Lett., 1999, 74(26):4014-4016.
[15]Moshnyaga V, Damaschke B, Shapoval O, et al. Nature Materials, 2003, 2:247-252.
[16]Petrov D K, KrusinEibaum L, Sun J Z, et al. Appl. Phys. Lett., 1999, 75(7): 995-997.
[17]Gupta S, Ranjit R, Mitra C, et al. Appl. Phys. Lett., 2001, 78(3): 362-364.
[18]Yan L, Kong L B,Yang T, et al. J. Appl. Phys., 2004, 96(3):1568-1571.
[19]黄宝歆,刘宜华,张汝贞, 等.中国稀土学报,2004,22(6):755-759.
[20]Lei L W, Fu Z Y, Zhang J Y, et al. Materials Science and Engineering B, 2006, 128(1-3): 70-74.
[21]Jin K X, Zhao S G, Chen C L, et al. Materials Letters, 2008,62(6-7):1061-1063.
[22]Zhang N, Ding W P, Zhong W, et al. Phys. Rev. B, 1997, 56(13): 8138-8142.
[23]Xia Z C, Yuan S L, Feng W, et al. Solid State Commun., 2003: 128(4):129-132.
[24]Sze S M.Physics of Semiconductor Devices, 2nd edition. New York: Wiley, 1981.
[25]Prasad J J B, Krishna Rao D, Sobhanadri J. J. Appl. Phys.,1986, 59(8):2866-2869.