研究论文

La2/3Sr1/3MnO3/ZnO混合物薄膜的磁电阻和伏安特性研究

  • 金克新 ,
  • 赵省贵 ,
  • 谭兴毅 ,
  • 陈长乐
展开
  • 西北工业大学 理学院 应用物理系, 西安 710072

收稿日期: 2008-07-23

  修回日期: 2008-09-09

  网络出版日期: 2009-05-20

Magnetroresistance and Currentvoltage Characteristics in La2/3Sr1/3MnO3/ZnO Composite Films

  • JIN Ke-Xin ,
  • ZHAO Sheng-Gui ,
  • TAN Xing-Yi ,
  • CHEN Chang-Le
Expand
  • Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2008-07-23

  Revised date: 2008-09-09

  Online published: 2009-05-20

摘要

利用脉冲激光沉积的方法在Si(100)氧化成SiO2的基片上制备了(La2/3Sr1/3MnO3)x/(ZnO)1-x混合物薄膜,研究了薄膜的磁电阻和伏安特性. X射线衍射分析表明,除了衬底SiO2的衍射峰以外,分别出现了La2/3Sr1/3MnO3(101)的衍射峰和ZnO(002)的衍射峰,且它们形成了两相共存体系. 实验表明:x=0.3的混合物薄膜表现为半导体导电特性,而x=0.4的样品则出现了典型的金属绝缘相变. 所制备的样品表现出了低场磁电阻效应和非线性伏安特性. 在0.7T磁场的作用下,x=0.3的样品在温度为60K时取得的最大磁电阻值为28.8%. 通过对伏安关系拟合表明,在La2/3Sr1/3MnO3和ZnO颗粒之间存在一定的耗尽层,且产生了界面缺陷态.

本文引用格式

金克新 , 赵省贵 , 谭兴毅 , 陈长乐 . La2/3Sr1/3MnO3/ZnO混合物薄膜的磁电阻和伏安特性研究[J]. 无机材料学报, 2009 , 24(3) : 591 -594 . DOI: 10.3724/sp.j.1077.2009.00591

Abstract

agnetroresistance and currentvoltage characteristics of the composite (La2/3Sr1/3MnO3)x/(ZnO)1-x films prepared by the pulsed laser deposition method on Si(100) substrates oxidized by SiO2 were investigated. XRD patterns indicate that ZnO and LSMO have (002) and (101) dominant orientations, respectively, and they form the coexisting system of two phases. Experimental results show the film with x=0.3 favors a semiconductive conduction and the film with x=0.4 exhibits the typical insulatormetal (I-M) transition. The films have the low field magnetoresistance(LFMR) effect and the nonlinear currentvoltage characteristics. The maximum LFMR value of the film with x=0.3 is about 28.8% at T=60K under an applied magnetic field of about 0.7T. The currentvoltage fitting shows that a great number of interface states appear at the depletion between La2/3Sr1/3MnO3 and ZnO grains due to the mismatch of the lattice.

参考文献

1]Jin S, Tuefel T H, Fastnacht R A, et al. Science, 1994, 264(5157): 413-417.
[2]赵省贵,陈长乐,金克新(ZHAO ShengGui, et al).无机材料学报(Journal of Inorganic Materials), 2008,23(2):281-285.
[3]Jin K X, Chen C L, Wang S L, et al. J. Appl. Phys., 2004, 96(3):1537-1539.
[4]Milner A, Gerber A, Grolsman B, et al. Phys. Rev. Lett., 1996, 76(3): 475-478.
[5]Coey J M D, Berkowlt A E, Barcells L,et al. Phys. Rev. Lett., 1998, 80(17):3815-3818.
[6]Hwang J Y, Cheong S W. Science, 1997, 278(5343):1607-1609.
[7]刘俊明,王克锋.物理学进展,2005, 25(1): 82-130.
[8]Xiao Q J, Jiang J S, Chien C L. Phys. Rev. Lett., 1992, 68(25):3749-3752.
[9]Berkowitz A E, Mitchell J R, Carey M J, et al. Phys.Rev.Lett., 1992, 68(25): 3745-3748.
[10]Gieny B, Chamberod A, Genin J B, et al. J.Magn.Magn.Mater., 1993, 126(1-3): 433-436.
[11]Wang J Q, Xiao G. Phys.Rev.B, 1994,49(6):3982-3996.
[12]Chien C L. Ann.Rev.Mater.Sci., 1995, 25:129-160.
[13]都有为.物理学进展,1997, 17(2):180-200.
[14]Balcells L, Carrillo A E, Martinesz B, et al. Appl. Phys. Lett., 1999, 74(26):4014-4016.
[15]Moshnyaga V, Damaschke B, Shapoval O, et al. Nature Materials, 2003, 2:247-252.
[16]Petrov D K, KrusinEibaum L, Sun J Z, et al. Appl. Phys. Lett., 1999, 75(7): 995-997.
[17]Gupta S, Ranjit R, Mitra C, et al. Appl. Phys. Lett., 2001, 78(3): 362-364.
[18]Yan L, Kong L B,Yang T, et al. J. Appl. Phys., 2004, 96(3):1568-1571.
[19]黄宝歆,刘宜华,张汝贞, 等.中国稀土学报,2004,22(6):755-759.
[20]Lei L W, Fu Z Y, Zhang J Y, et al. Materials Science and Engineering B, 2006, 128(1-3): 70-74.
[21]Jin K X, Zhao S G, Chen C L, et al. Materials Letters, 2008,62(6-7):1061-1063.
[22]Zhang N, Ding W P, Zhong W, et al. Phys. Rev. B, 1997, 56(13): 8138-8142.
[23]Xia Z C, Yuan S L, Feng W, et al. Solid State Commun., 2003: 128(4):129-132.
[24]Sze S M.Physics of Semiconductor Devices, 2nd edition. New York: Wiley, 1981.
[25]Prasad J J B, Krishna Rao D, Sobhanadri J. J. Appl. Phys.,1986, 59(8):2866-2869.
文章导航

/