研究论文

碳纳米管和镓掺杂碳纳米管场发射性能研究

  • 柳堃,晁明举 ,
  • 李华洋 ,
  • 梁二军 ,
  • 袁斌
展开
  • 郑州大学物理工程学院材料物理教育部重点实验室, 郑州 450052

收稿日期: 2006-03-06

  修回日期: 2006-07-10

  网络出版日期: 2007-01-20

Comparison of Field Emission in Carbon Nanotubes and Gallium-doped Carbon Nanotubes

  • LIU Kun ,
  • CHAO Ming-Ju ,
  • LI Hua-Yang ,
  • LIANG Er-Jun
Expand
  • Department of Physics & Key Lab of Material Physics of Ministry of Education, Zhengzhou University, Zhengzhou 450052, China

Received date: 2006-03-06

  Revised date: 2006-07-10

  Online published: 2007-01-20

摘要

采用催化热解方法分别 制备出碳纳米管和镓掺杂碳纳米管, 并利用丝网印刷工艺将其制备成纳米管薄膜. 对此薄膜进行低场致电子发射测试表明, 碳纳米管和镓掺杂纳米管开启电场分别为2.22和1.0V/μm, 当外加电场为2.4V/μm, 碳纳米管发射电流密度为400μA/cm2, 镓掺杂纳米管发射电流密度为4000μA/cm2. 可见镓掺杂碳纳米管的场发射性能优于同样条件下未掺杂时的碳纳米管. 对镓掺杂纳米管场发射机理进行了探讨.

本文引用格式

柳堃,晁明举 , 李华洋 , 梁二军 , 袁斌 . 碳纳米管和镓掺杂碳纳米管场发射性能研究[J]. 无机材料学报, 2007 , 22(1) : 181 -184 . DOI: 10.3724/SP.J.1077.2007.00181

Abstract

Carbon nanotubes and Ga-doped carbon nanotubes were synthesized by
pyrolysis and then purified. Thin films of the purified samples were fabricated
by a screen-printing method. Field emission properties of these films were
studied. It was shown that the turn-on field of carbon nanotubes and Ga-doped carbon nanotubes was 2.22V/μm and 1.0V/μm, and the current densities were 400μA/cm2 and 4000μA/cm2 for carbon nanotubes and Ga-doped carbon nanotubes at applied fields 2.4V/μm. The electron field emission properties of the gallium-doped nanotubes were much better than those of carbon nanotubes. Mechanisms of field emission of gallium-doped nanotubes were explained.

参考文献

[1] Rinzler A G, Hafner J H, Nikolaev P, et al. Science, 1995, 269: 1150--1155
[2] Gollins P J, Zettl A. Appl Phys Lett, 1996, 69 (13): 1969--1974.
[3] Gulyaev Yu V, Sinitsyn N I. 1996 9th I V MC 12: 206--211.
[4] Gulyaev Yu V, Chernozatonikill L A. 1996 9th I V MC 12: 5--10.
[5] Saito Y. The Second International Vacuum Electron Sources Conference, I VESC98. Extended Abstracts.[6] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787--792.
[7] Bonard J M, Kind H, Stockli T, et al. Solid State Electrons, 2001, 45 (6): 893--898.
[8] Li W Z, Wen J G, Senett M, et al. Chem Phys Lett, 2003, 368 (3-4): 299--304. [9] Zhou Z P, Ci L J, Chen X H, et al. Carbon, 2003, 41 (2): 337--342.
[10] 丁佩, 郭新勇, 张经纬, 等(DING Pei, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 447--452.
[11] 梁二军, 张红瑞, 刘一真, 等. 光散射学报, 2001, 13 (4): 205--209.
[12] 李强, 梁二军. 物理学报, 2005, 54 (12): 5931--5936.
[13] Bendiab N, Righi A, Anglaret E, et al. Chem Phys Lett, 2001, 339 (5-6): 305--310.
[14] Ye J T, Li Z M, Tang Z K, et al. Phys. Rev. B, 2003, 67, 113404: 4pages.
[15] Liang E J, Ding P, Zhang H R, et al. Diamond and Related Mat, 2004, 13 (1): 69--73.
[16] Semet V, Binh V T, Vincent P, et al. Appl. Phys. Lett., 2002, 81 (2): 343--347.
[17] Sun J P, Zhang Z X, Hou S M, et al. Appl. Phys. A, 2002, 75: 479--483.
[18] 丁佩, 晁明举, 梁二军, 等. 物理学报, 2004, 53 (8): 2786--2791.
[19] Bai X D, Guo J D, Yu J, et al. Appl. Phys. Lett., 2000, 76 (18): 2624--2628.
[20] Satyanarayana B S, Hart A, Milne W I, et al. Appl. Phys. Lett., 1997, 71 (10): 1430--1435.
文章导航

/