研究论文

SrWO4晶体的紫外受激拉曼散射

  • 王正平 ,
  • 胡大伟 ,
  • 张怀金 ,
  • 许心光 ,
  • 王继扬 ,
  • 邵宗书
展开
  • 山东大学 1. 晶体材料国家重点实验室; 2. 国防科学技术研究院, 济南 250100

收稿日期: 2008-08-25

  修回日期: 2008-09-26

  网络出版日期: 2009-05-20

Ultra-violet Stimulated Raman Scattering of SrWO4 Crystal

  • WANG Zheng-Ping ,
  • HU Da-Wei ,
  • ZHANG Huai-Jin ,
  • XU Xin-Guang ,
  • WANG Ji-Yang ,
  • SHAO Zong-Shu
Expand
  • 1. State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China; 2. Institute of Science Technology for National Defence, Shandong University, Jinan 250100, China

Received date: 2008-08-25

  Revised date: 2008-09-26

  Online published: 2009-05-20

摘要

使用提拉法生长了高光学质量的SrWO4晶体,尺寸为22mm×40mm,重72.3g.测量了SrWO4 晶体的透过光谱,其短波截止边为263nm,长波截止边大于3200nm,因此可在较宽波长范围内实现拉曼频移.采用无腔的单次通过方式,在SrWO4晶体中实现了紫外光激发的受激拉曼散射.当抽运光为355nm皮秒激光脉冲时获得了3级斯托克斯谱线(366.44、379.25、392.98nm),其中一级斯托克斯线的抽运阈值仅为169.76MW/cm2,相应的拉曼增益高达49.09cm/GW.实验表明,SrWO4具有透光波段宽、抗光损伤能力强、拉曼阈值低、增益系数大等优点,在紫外激光的拉曼变频方面表现出良好应用前景.

本文引用格式

王正平 , 胡大伟 , 张怀金 , 许心光 , 王继扬 , 邵宗书 . SrWO4晶体的紫外受激拉曼散射[J]. 无机材料学报, 2009 , 24(3) : 563 -566 . DOI: 10.3724/sp.j.1077.2009.00563

Abstract

SrWO4 crystal with high optical quality was grown by Czochralski pulling method. The crystal sizes reached 22mm×40mm, and the weight was 72.3g. The transmittance range of SrWO4 crystal was measured to be 263-3200nm. By the singlepass configuration, ultraviolet stimulated Raman scattering (SRS) of SrWO4 crystal was realized. When the pump source was a 355nm picoseconds laser, three Stokes lines (366.44, 379.25, 392.98nm)were obtained. The pump threshold of the first Stokes line was only 169.76MW/cm2, and the corresponding Raman gain was 49.09cm/GW. The results show that SrWO4 crystal possesses many advantages such as wide transmittance spectrum, high optical damage threshold, low Raman pump threshold, and large gain coefficient, so the material will have good applications in Raman frequency shifting of ultra-violet laser.

参考文献

1]Pask H M, Piper J A. Optics Commun., 1998, 148(4-6): 285-288.
[2]金 峰. 激光与光电子学进展, 2003, 40(6): 40-42.
[3]Zverev P G, Basiev T T, Osiko V V, et al. Optics Materials, 1999, 11(4): 315-334.
[4]Cerny P, Zverev P G, Jelinkova H, et al. Optics Commun., 2000, 177(16): 397-404.
[5]WANG Zhengping, HU Dawei, FANG Xin, et al. Chinese Physics Letters, 2008, 25(1): 122-124.
[6]HU Dawei, WANG Zhengping, ZHANG Huaijin, et al. Chinese Physics Letters, 2006, 23(10): 2766-2769.
[7]Kaminskii A A, Ueda K, Eichler H, et al. Optics Commun., 2001, 194(1-3): 201-206.
[8]胡大伟, 于浩海, 王正平, 等. 光学学报, 2006, 26(6): 918-920.
[9]胡大伟, 王正平, 张怀金, 等. 中国激光, 2008, 35(1): 11-16.
[10]胡大伟, 王正平, 张怀金, 等. 物理学报, 2008, 57(3): 1714-1718.
[11]Basiev T T, Sobol A A, Voronbo Y K, et al. Opt. Mater., 2000, 15(3): 205-216.
[12]Ivleva L I, Basiev T T, Voronina I S, et al. Opt. Mater., 2003, 23(1-2): 439-442.
[13]Jelinkova H, Sulc J, Basiev T T, et al. Laser Phys. Lett., 2005, 2(1): 4-11.
[14]Brenier A, Jia G, Tu C. J. Phys.: Condens. Matter., 2004, 16(49): 9103-9108.
[15]Cerny P, Jelinkova H, Zverev P G, et al. Progress in Quantum Electronics, 2004, 28(2): 113-143.
[16]Cerny P, Jelinkova H, Basiev T T, et al. IEEE J. Quantum Electronics, 2002, 38(11): 1471-1477.
文章导航

/