研究论文

热处理温度对TiO2-WO3复合光催化材料储能特性的影响

  • 曹铃林 ,
  • 袁 坚 ,
  • 陈铭夏 ,
  • 上官文峰
展开
  • 上海交通大学 机械与动力学院 燃烧与环境技术研究中心, 上海 200240

收稿日期: 2008-07-23

  修回日期: 2008-11-11

  网络出版日期: 2009-05-20

Effect of Heat Treatment Temperature on Energy Storage Ability of TiO2-WO3 Composite Photocatalyst

  • CAO Ling-Lin ,
  • YUAN Jian ,
  • CHEN Ming-Xia ,
  • SHANGGUAN Wen-Feng
Expand
  • Research Center for Combustion and Environmental Technology, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2008-07-23

  Revised date: 2008-11-11

  Online published: 2009-05-20

摘要

以离子交换法获得的可溶性钨酸溶液与TiO2为原料,制备了TiO2-WO3复合光催化材料. 用电化学恒电流放电法表征了材料的储能特性,并结合XRD、TEM、BET、UV-Vis等手段,研究了材料中WO3的晶型和结晶度随热处理温度的变化及其对材料光催化储能效应产生的影响. 在电化学测试中,TiO2-WO3复合材料显示了一定的光催化储能特性. 且WO3的结晶度对材料储能性有一定的影响:WO3为水合态或结晶度很低时,材料几乎没有光催化储能性;随着结晶度的增强,储能性提高;TiO2-WO3的储能性能最高达到0.83×10-3C·mg-1; 结晶度过高,储能性反之降低. 利用材料的光催化储能特性,在黑暗条件下对罗丹明B的降解率为11%,显示了一定的储能降解活性.

关键词: 光催化; TiO2-WO3; 储能

本文引用格式

曹铃林 , 袁 坚 , 陈铭夏 , 上官文峰 . 热处理温度对TiO2-WO3复合光催化材料储能特性的影响[J]. 无机材料学报, 2009 , 24(3) : 448 -452 . DOI: 10.3724/SP.J.1077.2009.00448

Abstract

TiO2-WO3 photocatalyst powder was made from TiO2 powder and soluble tungstic acid. The energy storage behavior was characterized by electrochemical galvanostatic method. Combined with XRD, TEM and BET, crystalline form and crystallinity changing of WO3 with heat treatment was studied. TiO2-WO3 composite materials have energy storage ability in electrochemical measurement. The crystallinity of WO3 has strong influence on samples’ performance. When WO3 is tungstite or amorphous, the TiO2-WO3 composites have no or quite low energy storage capacity. The energy storage capacity is improved with the crystallinty of WO3 increasing. The maximum of TiO2-WO3 energy storage capacity is 0.83×10-3 C·mg-1. But when the crystallinity of WO3 is high, the energy storage capacity decreases. And degradation experiment displays that Rhodamine B can be degraded in darkness by the TiO2-WO3 photocatalyst with energy storage ability, and the degradation efficiency reaches 11%.

参考文献

[1]Tatsuma T, Saitoh S, Fujishima A, et al. Chem. Mater., 2001, 13(9): 2838-2842.
[2]Tatsuma T, Saitoh S, Fujishima A, et al. Langmuir, 2002, 18(21): 7777-7779.
[3]Ngaotrakanwiwat P, Tatsuma T. J. Electroanal. Chem., 2004, 573(2): 263-269.
[4]Takahashi Y, Ngaotrakanwiwat P, Tatsuma T. Electrochim. Acta, 2004, 49(12): 2025-2029.
[5]Tatsuma T, Saitoh S, Fujishima A, et al. Electrochem. Commun., 2003, 5(9): 793-796.
[6]Higashimoto S, Kitahata N, Mori K, et al. Catal. Lett., 2005, 101(1-2): 49-51.
[7]Higashimoto S, Shishido T, Ohno Y. J. Electrochem. Soc., 2007, 154(2): 48-54.
[8]刘明志,程金树,袁 坚. 武汉工业大学学报,2000,22(3): 22-23.
[9]Choi Y G, Sakai G, Shimanoe K. Sensor Actuat. B-Chem., 2002, 87(1): 63-72.
[10]邹丽霞. 高比表面积纳米WO3的制备及其光催化降解气相甲醛的研究. 南京理工大学博士论文,2005.
[11]Nenadovie M T, Rajh T, MiEie O I. J. Phys. Chem., 1984, 88(24): 5827-5830.
文章导航

/