研究论文

有机表面修饰温度对纳米二氧化钛微结构的影响

  • 姚 超 ,
  • 丁永红 ,
  • 李为民 ,
  • 王茂华 ,
  • 陆路德 ,
  • 汪 信
展开
  • 1. 南京理工大学 软化学与功能材料教育部重点实验室, 南京 210094; 2. 江苏工业学院 化工系, 常州 213164

收稿日期: 2008-09-12

  修回日期: 2008-12-31

  网络出版日期: 2009-05-20

Effect of Organic Modification Temperature on the Microstructure of Nanoscale Titania

  • YAO Chao ,
  • DING Yong-Hong ,
  • LI Wei-Min ,
  • WANG Mao-Hua ,
  • LU Lu-De ,
  • WANG Xin
Expand
  • 1. Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; 2.Department of Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, China

Received date: 2008-09-12

  Revised date: 2008-12-31

  Online published: 2009-05-20

摘要

首先制备出纳米二氧化钛水分散液, 然后通过蒸馏的方法, 把纳米二氧化钛粒子由水分散液转移到溶有硬脂酸的甲苯溶液中, 以确保纳米二氧化钛在有机相中进行表面修饰. 然后升温到不同的温度, 利用硬脂酸对纳米二氧化钛进行有机表面修饰, 研究了有机表面修饰温度对纳米二氧化钛微结构的影响. 采用红外光谱(FTIR)、X 射线光电子能谱(XPS)、热分析(TGDTG)、X 射线粉末衍射(XRD)和透射电镜(TEM)等对有机表面修饰前后的纳米二氧化钛进行分析表征. 结果表明, 硬脂酸与纳米二氧化钛表面之间存在双齿配位方式的化学键作用, 硬脂酸在纳米二氧化钛表面形成了均匀的单分子化学修饰层. 随着表面修饰温度的升高, 纳米二氧化钛的晶粒逐渐长大, 硬脂酸在纳米二氧化钛表面的化学包覆量逐渐下降, 硬脂酸分子间排列更加紧密, 硬脂酸包覆层由1nm变为2~3nm. 表面修饰温度对硬脂酸与纳米二氧化钛表面的结合方式影响不大.

本文引用格式

姚 超 , 丁永红 , 李为民 , 王茂华 , 陆路德 , 汪 信 . 有机表面修饰温度对纳米二氧化钛微结构的影响[J]. 无机材料学报, 2009 , 24(3) : 438 -442 . DOI: 10.3724/sp.j.1077.2009.00438

Abstract

Nanoscale titania aqueous dispersion was prepared firstly, and then nanotitania particles was transfered into methylbenzene in which stearic acid was dissolved from water by distillation so that the surface modification was carried out in organic system. Nanoscale titania was modified with stearic acid at different temperatures.The samples were characterized by Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscope (XPS), thermogravimetry(TG), derivative thermogravimetry (DTG) and transmission electron microscopye(TEM). The results show that stearic acid is bound on the surface of nanoscale titania by bidentate structure, and even monolayer coverage is obtained. With modification temperature increasing, the crystallite size of nanoscale titania increase, the mass fraction of chemisorbed stearic acid on the surface of nanoscale titania decrease, and the thickness of stearic acid layer changes from 1nm to 2-3nm.The modification temperature has little effect on interactions between stearic acid and titania.

参考文献

1]Siddiquey I A,Ukaj E, Furusawa T, et al. Materials Chemistry and Physics, 2007, 116(6):162-168.
[2]Kobayashi M, Kalriess W. Cosmetics & Toiletries, 1997, 112(6): 83-86.
[3]Kuo C Y, Lu S Y. Nanotechnology, 2008, 19(9):957051-957058.
[4]Koo H J, Kim Y J, Lee Y H, et al.Advanced Materials, 2008, 20(1): 195-199.
[5]Yurdakal S, Palmisano G, Loddo V, et al. Journal of the American Chemical Society,2008, 130(5): 1568-1569.
[6]姚 超,高国生,林西平, 等(YAO Chao, et al).无机材料学报(Journal of Inorganic Materials),2006, 21(2): 315-321.
[7]Nakayama N,Hayashi T. Colloids and Surfaces, 2008, 317(1-3): 543-550.
[8]Thistlethwaite P J, Hook M S. Langmuir, 2000, 16(11): 4993-4998.
[9]张立德, 牟季美.纳米材料与纳米结构. 北京:科学出版社,2001:2.
[10]Nussbaumer R J, Caseri W,Tervoort T, et al. Journal of Nanoparticle Research,2002, 4(4): 319-323.
[11]邹 玲, 乌学东, 陈海刚, 等. 物理化学学报, 2001, 7(4): 305-309.
[12]李宗威, 朱永法. 化学学报, 2003,61(9): 1484-1487.
[13]蒋晓明, 王晓勇, 陈月珠. 石油学报(石油加工),2002, 8(1): 61-65.
[14]Shu Y, Hitoshi H, Daisaku M, et al. Journal of Photochemistry and Photobiology A: Chemistry,2004, 163(1-2): 1-8.
[15]Lu Y Q, Miller J D. J.Colloid Interface Sci., 2002, 256(1): 41-52.
[16]Capelle H A, Britcher L G, Morris G E. J.Colloid Interface Sci., 2003, 268(2): 293-300.
[17]肖方玉, 姚钟麒, 金道森. 物理化学学报, 1995, 11(2): 118-122.
文章导航

/