研究论文

H2Ti4O9纳米晶的制备与表征

  • 王金淑 ,
  • 李辉 ,
  • 殷澍 ,
  • 佐藤次雄
展开
  • 1. 北京工业大学材料科学与工程学院, 北京 100022; 2. 东北大学多元物质科学研究所, 日本 仙台980-8577

收稿日期: 2006-09-11

  修回日期: 2006-11-16

  网络出版日期: 2007-09-20

Preparation and Characterization of H2Ti4O9 Nanocrystals

  • WANG Jin-Shu ,
  • LI Hui ,
  • YIN Shu ,
  • SATO Tsugio
Expand
  • 1. School of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, China; 2. Division of Advanced System, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

Received date: 2006-09-11

  Revised date: 2006-11-16

  Online published: 2007-09-20

摘要

采用机械化学法, 利用离子交换反应, 通过离子交换、层离和沉淀过程制备了高比表面积的H 2Ti4O9纳米晶体. 采用XRD、TEM、热分析、N2吸附-脱附等温过程和吸收光谱对制备的H2 Ti4O9纳米晶体进行了表征. 结果表明, 以TiO2纳米晶片形式存在的微晶Ti4O92-, 其径向尺寸低于50nm, 纳米晶片的比表面积取决于反应溶液的pH值和对前驱物K2Ti4O9 球磨的时间. 将K2Ti4O9球磨2h后悬浮于1mol/L HCl溶液中搅拌, 进行离子交换反应, 最后将溶液pH值调整至8, 沉淀后所得产物H2Ti4O9 的比表面积达328.4m2·g-1.

本文引用格式

王金淑 , 李辉 , 殷澍 , 佐藤次雄 . H2Ti4O9纳米晶的制备与表征[J]. 无机材料学报, 2007 , 22(5) : 843 -846 . DOI: 10.3724/SP.J.1077.2007.00843

Abstract

H2Ti4O9 nanocrystals with high specific surface areas were prepared by delamination and precipitation process through ball milling combined with ion exchange reaction. The samples were characterized by X-ray powder diffraction, transmission electron microscope, thermal analysis, N2 adsorption-desorption isotherm, and absorption spectrum. The crystallites of Ti4O92- in the form of titania nanosheets have lateral size less than 50nm. The specific surface area of H2 Ti4O9 nanocrystals depends on pH values of precipitation solution and ball milling time. The specific surface area of H2 Ti4O9 nanocrystals prepared by ball-milling of K2Ti4O9 for 2h and suspending in 1mol/L HCl followed by precipitation at pH=8 can reach 328.4m2·g-1.

参考文献

[1] Izawa H, Kikkawa S, Koizumi M. J. Phys. Chem., 1982, 86 (25): 5023--5026. [2] Airoldi C, Nunes L M, Farias R F. Mater. Res. Bull., 2000, 35 (13): 2081--2090.
[3] Hou W, Yan H Q, Peng B, et al. J. Mater. Chem., 1995, 5 (1): 109--114.
[4] Wang Z S, Sasaki T, Maramatsu M, et al. Chem. Mater., 2003, 15 (3): 807--812.
[5] Liu Z H, Yang X, Makita Y, et al. Chem. Mater., 2002, 14 (11): 4800--4806.
[6] Schaak R E, Mallouk T E. Chem. Mater., 2000, 12 (11): 3427--3434.
[7] Ogawa M, Takizawa Y. Chem. Mater., 1999, 11 (1): 30--32.
[8] Ebina Y, Sasaki T, Harada M, et al. Chem. Mater., 2002, 14 (10): 4390--4395.
[9] Sukpirom N, Lerner M M. Mater. Sci. Eng. A, 2002, 333 (2): 218--222.
[10] Huinier A. X-ray Diffraction, Freeman, SanFrancisco, 1963. 134.
[11] Vossmeyer T, Katsikas L, Giersig M, et al. J. Phys. Chem., 1994, 98 (31): 7665--7673.
文章导航

/