研究论文

受主掺杂 BaPbO3中的非化学计量比

  • 陆裕东 ,
  • 王歆 ,
  • 庄志强 ,
  • 刘保岭 ,
  • 刘勇
展开
  • (华南理工大学材料学院, 特种功能材料及其制备新技术教育部重点实验室, 广州 510640)

收稿日期: 2006-10-13

  修回日期: 2006-12-05

  网络出版日期: 2007-09-20

Nonstoichiometry in Acceptor-doped BaPbO3

  • LU Yu-Dong ,
  • WANG Xin ,
  • ZHUANG Zhi-Qiang ,
  • LIU Bao-Ling ,
  • LIU Yong
Expand
  • (Key Laboratory of Special Functional Materials and Advanced Manufacturing Technology, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China)

Received date: 2006-10-13

  Revised date: 2006-12-05

  Online published: 2007-09-20

摘要

采用高温平衡电导法测定了高温平衡电导率随氧分压(10-12~105Pa)的变化曲线, 由此确定了未掺杂和Al受主掺杂BaPbO3陶瓷多晶体中的主导缺陷及其电荷补偿缺陷. 同时讨论了受主掺杂浓度对材料的高温平衡电导率、高氧分压和低氧分压下主导缺陷转变点的影响, 确定了受主掺杂BaPbO3缺陷行为随掺杂量的变化机理. 在高氧分压下, 材料表现出本征缺陷行为, Pb离子空位占主导, 电荷补偿缺陷为空穴; 随着氧分压的下降, 材料由本征缺陷控制区域进入非本征缺陷控制区域, 受主杂质取代Pb离子空位占主导; 在低氧分压区域, 随着氧离子空位浓度的上升, 氧离子空位取代空穴, 成为受主杂质的电荷补偿缺陷.

本文引用格式

陆裕东 , 王歆 , 庄志强 , 刘保岭 , 刘勇 . 受主掺杂 BaPbO3中的非化学计量比[J]. 无机材料学报, 2007 , 22(5) : 811 -815 . DOI: 10.3724/SP.J.1077.2007.00811

Abstract

The defect chemistry of BaPbO3 was studied by the measurement of the equilibrium electrical conductivity as a function of oxygen pressure (10-12-105 Pa). The major defects and their charge-compensating defects in undoped and acceptor-doped BaPbO3 were present. The influence of impurities concentrations on equilibrium electrical conductivity and both inflexions of the change of major defects in high and low oxygen-activity regions were discussed. At highly oxygen activity the major defects are lead vacancies and their compensating holes. With the decreasing in oxygen activity, the major defects will change from intrinsic disorder into
extrinsic disorder and the acceptor impurities become the major source of defects. At lower oxygen activity the oxygen vacancies become compensating defects instead of the holes, and the reducing reaction becomes the major source of compensating defects. Both inflexions in high and low oxygen-activity regions move to higher oxygen activity with the increasing of acceptor concentrations.

参考文献

[1] Chang M C, Wu J M, Cheng S Y, et al. Materials Chemistry and Physics, 2000, 65: 57--62.
[2] 陆裕东, 王歆, 庄志强(LU Yu-Dong, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 138--142.
[3] Luo Yih-Rong, Wu Jenn-Ming. Applied Physics Letters, 2001, 79 (22): 3669--3671.
[4] Wang X, LU Y D, Zhuang Z Q. Journal of the Chinese Ceramics Society, 2006, 34 (9): 1140--1142.
[5] Luo Yih-Rong, Wu Jenn-Ming. Jpn. J. Appl. Phys., 2003, 42: 242--246.
[6] 陆裕东, 王歆, 庄志强. 功能材料与器件学报, 2007, 13 (1): 13--16.
[7] Yasukawa M, Kadota A, Maruta M, et al. Solid state Communications, 2002, 124: 49--52.
[8] 陆裕东, 王歆, 庄志强(LU Yu-Dong, et al). 硅酸盐学报(Journal of the Chinese Ceramics Society), 2007, 35 (3): 308--311.
[9] 王歆, 陆裕东, 庄志强(WANG Xin, et al). 硅酸盐学报(Journal of the Chinese Ceramics Society), 2007, 35 (6): 696--700.
[10] Smyth D M. J. Electroceram., 2002, 9: 179--186.
[11] Chan N H, Sharma R K, Smyth D M. J. Electrochem. Soc., 1981, 128 (8): 1762--1769.
[12] Chan H N, Sharma R K, Smyth D M. J. Am. Ceram. Soc., 1982, 65 (3): 167--170.
[13] Smyth D M. Solid State Ionics, 2000, 129: 5--12.
文章导航

/