研究论文

二氧化钛薄膜的三阶非线性光学特性

  • 龙 华 ,
  • 陈爱平 ,
  • 杨 光 ,
  • 李玉华 ,
  • 陆培祥
展开
  • 华中科技大学 武汉光电国家实验室, 武汉 430074

收稿日期: 2008-06-16

  修回日期: 2008-08-03

  网络出版日期: 2009-03-20

Thirdorder Nonlinear Optical Properties of TiO2 Films

  • LONG Hua ,
  • CHEN Ai-Ping ,
  • YANG Guang ,
  • LI Yu-Hua ,
  • LU Pei-Xiang
Expand
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2008-06-16

  Revised date: 2008-08-03

  Online published: 2009-03-20

摘要

采用脉冲激光沉积技术在熔石英基片上制备了c轴取向的锐钛矿相TiO2薄膜.通过X射线衍射和原子力显微镜对薄膜的结构、结晶性和表面特性进行了表征.通过透射光谱计算得到TiO2薄膜折射率约为2.1,光学带隙约为3.18eV.结合飞秒激光和Z扫描方法测量了薄膜的超快非线性光学特性,结果表明:锐钛矿TiO2薄膜具有负的非线性吸收系数和负的非线性折射率,其大小分别为-6.2×10-11m/W和-6.32×10-17m2/W,对应的三阶非线性极化率的实部和虚部分别为-7.1×10-11esu和-4.42×10-12esu.并计算薄膜的优值比T=βλ/n2≈0.8,表明锐钛矿相的TiO2在非线性光学器件方面具有潜在的应用前景.

本文引用格式

龙 华 , 陈爱平 , 杨 光 , 李玉华 , 陆培祥 . 二氧化钛薄膜的三阶非线性光学特性[J]. 无机材料学报, 2009 , 24(2) : 221 -224 . DOI: 10.3724/SP.J.1077.2009.00221

Abstract

Anatase TiO2 films were fabricated on fused quartz by pulsed laser deposition (PLD) technique and the single-phase anatase films were obtained under the optimal conditions. The X-ray diffraction and atomic force microscope were used to investigate the structure and surface characters of the film. The third-order optical nonlinearities of the films were measured by Z-scan technique using a femtosecond laser (50fs) of 800nm. From the transmission spectra, the optical bandgap and linear refractive index of the TiO2 film are determined to be 3.18eV and 2.1, respectively. The nonlinear absorption coefficient and nonlinear refractive index are determined to be -6.2×10-11m/W and -6.32×10-17m2/W, respectively.The real and imaginary parts of third-order nonlinear susceptibility χ(3) are determined to be -7.1×10-11esu and -4.42×10-12esu, respectively. And the following figure of merit T=βλ/n2 is calculated to be 0.8 for the film, indicating that the anatase TiO2 films have great potential applications to nonlinear optical devices.

参考文献

[1]Liao H B, Xiao R F, Fu J S, et al. Opt. Lett., 1998, 23(5): 388-390.
[2]You G J, Zhou P, Dong Z W, et al. Phys. B, 2007, 393(1-2): 188-194.
[3]Yuwono A, Xue J M, Wang J, et al. J. Electr., 2006, 16(4): 431-439.
[4]Gayvoronsky V, Galas A, Shepelyavyy E, et al. Appl. Phys. B: Lasers and Optics, 2005, 80(1): 97-100.
[5]Sheikbahae M, Said A A, Stryland E W V. Optics Letters, 1989, 14(17): 955-957.
[6]龙 华,杨 光,陈爱平,等(LONG Hua, et al).无机材料学报(Journal of Inorganic Materials),2008, 23(5):1070-1074.
[7]Langford J I, Wilson A J C. J. Appl. Cryst., 1978, 11(2): 102-113.
[8]Manifacier J C, Gasiot J, Fillard J P. J. Phys. E: Sci. Instrum., 1976, 9(11): 1002-1004.
[9]Simpson J R, Drew H D. Phys. Rev. B, 2004, 69(19): 193205-193208.
[10]Mardare D, Tasca M, Delibas M. Appl. Surf. Sci.,2000, 156(1-4): 200-206.
[11]Aarik J, Niilisk A. Proc. of SPIE, 2007, 6596: 659616-1-6.
[12]Orendorz A, Brodyanski A, Losch J, et al. Surf. Sci., 2007, 601(18): 4390-4394.
[13]杨 光,陈正豪. 物理学报, 2007, 56(2): 1182-1187.
[14]Yang G, Zhou Y H, Long H, et al. Thin Solid Films, 2007, 515(20-21): 7926-7929.
[15]Elim H I, Ji W, Yuwono A H, et al. Appl. Phys. Lett., 2003, 82(16): 2691-2693.
[16]Sharan A, An I, Chen C, et al. Appl. Phys. Lett., 2003, 83(22): 5169-5171.
[17]Huang Y L, Sun C K, Liang J C, et al. Appl. Phys. Lett., 1999, 75(22): 3524-3526.
[18]Shi F W, Meng X J, Wang G G, et al. Thin Solid Films, 2006, 496(2): 333-335.
[19]Chen C W, Tang J L, Chung K H, et al. Opt. Express, 2007, 15(11): 7006-7018.
文章导航

/