研究论文

工业硫酸氧钛合成有序介孔TiO2及其机理研究

  • 田从学 ,
  • 张 昭
展开
  • 1.四川大学 化工学院, 成都 610065; 2.攀枝花学院, 攀枝花 617000

收稿日期: 2008-06-27

  修回日期: 2008-08-18

  网络出版日期: 2009-03-20

Synthesis of Ordered Mesoporous TiO2 from Industrial Titanyl Sulfate
Solution and its Formation Mechanism

  • TIAN Cong-Xue ,
  • ZHANG Zhao
Expand
  • 1.School of Chemical Engineering,Sichuan University,Chengdu 610065,China; 2.Panzhihua University,Panzhihua 617000,China

Received date: 2008-06-27

  Revised date: 2008-08-18

  Online published: 2009-03-20

摘要

采用复合表面活性剂CTAB和P123形成的超分子模板为结构导向剂,以工业硫酸氧钛液为钛源,控制溶液pH值及水解条件调控TiOSO4的水解缩聚及与模板剂的自组装速率,钛水解胶粒通过界面作用形成介孔前驱体,脱模后制得二维六方,比表面积为205.7m2/g,平均孔径为3.28nm的锐钛型有序介孔TiO2. 用XRD、HRTEM、SAED及等温N2吸附等对样品进行了表征,初步探讨了介孔的形成过程. 钛水解胶粒和复合模板剂通过界面处的静电和氢键等相互作用,协同形成介孔结构,属协同作用机理.

本文引用格式

田从学 , 张 昭 . 工业硫酸氧钛合成有序介孔TiO2及其机理研究[J]. 无机材料学报, 2009 , 24(2) : 225 -228 . DOI: 10.3724/SP.J.1077.2009.00225

Abstract

Using composite template (CTAB and P123) as structuredirecting agents, industrial titanyl sulfate as Ti source, the precursor of mesoporous TiO2 was prepared via controlling the hydrolysis and condensation rate of industrial TiOSO4, self-assembly rate of template and pH value of solution. The asprepared materials were characterized by XRD, HRTEM, SAED and nitrogen adsorptiondesorption.Ordered mesoporous anatase titania is obtained after template removal, with hexaganol mesopore, SBET of 205.7m2/g,average pore diameter of 3.28nm. The formatiom process of mesopore belongs to cooperative formation mechanism, i.e. the hydrolysis colloid particles of titanium and composite template interact through static force and hydrogen bond on the interface, cooperating to form mesopore.

参考文献

[1]Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359(6397): 710-712.
[2]Stark W J, Wegner K, Pratsinis S E, et al. J. Catal., 2001,197(1):182-191.
[3]Thelakkat M, Schmitz C, Schmidt H W. Adv. Mater., 2002, 14(8): 577-581.
[4]Niederberger M, Bart M B. Chem. Mater., 2002, 14(10): 4364-4370.
[5]Morris D, Egdell R G. J. Mater. Chem., 2001, 11(12): 3207-3210.
[6]Puzenat E, Pichat P. J. Photochem. Photobiol. A: Chem, 2003,160(1-2): 127-133.
[7]Antonelli D M, Ying J Y. Angew. Chem. Int. Ed. Engl., 1995, 34(18): 2014-2017.
[8]Gibaud A, Grosso D, Smarsly B, et al. J. Phys. Chem. B, 2003,107(57): 6114-6118.
[9]Kambe S, Murakoshi K, Kitamura T, et al. Sol. Energ. Mat. Sol. Cells., 2000,61(4): 427-441.
[10]Yu J C, Yu J, Zhang L, et al. J. Photochem. Photobiol. A: Chem., 2002,148(1-3): 263-271.
[11]Tan Ruiqin, He Yu, Zhu Yongfa,et al. Journal of Materials Science, 2003, 38: 3973-3978.
[12]Kolen′ko Y V, Maximov V D, Garshev A V, et al. Chem. Phys. Lett., 2004, 388(4-6): 411-415.
[13]Luca V, Watson J N, Ruschena M, et al. Chem. Mater., 2006, 18(5): 1156-1168.
[14]田从学,张 昭,何菁萍,等. 稀有金属材料与工程, 2006, 35(Z2): 185-189.
[15]田从学,张 昭,沈 俊,等. 稀有金属材料与工程, 2007, 35(Z3): 631-636.
[16]柳 强,田从学,张 昭. 中国有色金属学报, 2007,17(5): 807-812.
[17]Devi G S, Hyodo T, Shimizu Y, et al. Sensor Actuat BChem., 2002, 87(1):122-129.
[18]张立德. 纳米材料. 北京:化学工业出版社,2000.
[19]Pedersen J S, Gerstenberg M C. Colloids Surf. A, 2003, 213(2-3): 175-187.
[20]Zhang K W, Khan A. Macromolecules, 1995, 28(11): 3807-3812.
[21]Yun H S, Miyazawa K, Zhou H S, et al. Adv. Mater., 2001, 13(18):1377-1380.
[22]黄惠忠. 纳米材料分析. 北京:化学工业出版社,2003: 254.
[23]赵国玺, 朱王步瑶. 表面活性剂作用原理. 北京:中国轻工业出版社,2003.
[24]Tanford C. The hydrophobic effect, New York: WileyIntersciece, 1973: 52.
[25]Kim J M, Sakamoto Y, Hwang Y K, et al. J. Phys. Chem. B, 2002, 106(10): 2552-2558.
文章导航

/