在非配位溶剂中合成了高质量的CdS纳米晶核,并利用Cu2+离子对其进行掺杂,制备了CdS∶Cu纳米晶.通过进一步采用连续离子层吸附反应的方法对CdS∶Cu纳米晶进行表面修饰,得到CdS∶Cu/CdS复合结构纳米晶.利用X射线衍射(XRD),透射电镜(TEM),紫外可见吸收光谱(UV-Vis)和荧光光谱(PL)对其结构、形貌以及光学性质进行了表征和分析,结果表明:所制备的复合结构CdS∶Cu/CdS纳米晶为立方闪锌矿结构;与CdS纳米晶核相比,掺杂Cu2+可以使其表面态发光发生红移;在CdS∶Cu纳米晶中,通过改变掺杂Cu2+的浓度,可以实现表面态发光在570和620nm之间的连续调节.与未经包覆的CdS∶Cu纳米晶相比,包覆层CdS增强了纳米晶CdS∶Cu的稳定性.
CdS cores were successfully synthesized in noncoordinating solvents. The composite structure of core/shell CdS∶Cu/CdS nanocrystals was obtained through the modification of as-prepared Cu2+ ions doped CdS cores using successive ion layer adsorption and reaction (SILAR) technique. The crystal structures, shapes and optical properties of as-synthesized nanocrystals were characterized by X-ray diffraction, transmission electron microscope, UV-Vis absorption and photoluminescence spectroscope. The results show that the crystal structure of asprepared CdS∶Cu/CdS nanocrystal is zinc blende. Compared with pure CdS nanocrystals, the Cu2+ dopant in CdS leads the surfacestate related emission peak shifting to longer wavelength. The surfacestate related emission of CdS∶Cu nanocrystal can also be adjusted consecutively from 570nm to 620nm by tuning the doping concentration of Cu2+ ions from 2% to 6%. The overcoating of CdS shell can increase the stability of surfacestate related emission of CdS∶Cu nanocrystals.
[1]Alivisatos A P. Science, 1996, 271(5251): 933-937.
[2]石 鹏.材料导报,2007,21(专辑Ⅸ): 23-26.
[3]Murray C B, Kagan C R, Bawendi M G. Annu Rev Mater Science, 2000, 30: 545-610.
[4]Nagamani C, Bhat S V, Sarma D D, et al. Chem. Mater., 2007, 19(13): 3252-3259.
[5]刘晓新,赵 娟,程志捷,等(LIU Xiao-Xin, et al).无机材料学报(Journal of Inorganic Materials),2004,19(3): 691-695.
[6]袁求理,聂秋林(YUAN QiuLi, et al).无机材料学报(Journal of Inorganic Materials),2007,22(1): 49-52.
[7]Nag Angshuman, Sarma D D. J. Phys. Chem. C, 2007, 111(37): 13641-13644.
[8]Yang Yongan, Chen Ou, Cao Y Charles, et al. J. Am. Chem. Soc., 2006, 128(38): 12428-12429.
[9]Reiss Peter, Bleuse Joe1l, Adam Pron. Nano Lett., 2002, 2(7): 781-784.
[10]Borcherta H, Talapin D V. J.Chem. Phys., 2003, 119(3): 1800-1807.
[11]唐爱伟,滕 枫,王永生,等(TANG Ai-Wei, et al).无机材料学报(Journal of Inorganic Materials),2006,21(2): 322-328.
[12]He Yao, Lu Haoting, Huang Wei, et al. J. Phy. Chem. B, 2006, 110(27): 13370-13374.
[13]Yu W William, Peng Xiaogang. Angew. Chem. Int. Ed., 2002, 41(13): 2368-2371.
[14]Li J Jack, Wang Y Andrew, Peng Xiaogang, et al. J. Am. Chem. Soc., 2003, 125(41): 12567-12575.