研究论文

氧化硅包覆铁“壳/核”型纳米复合粒子的制备及其吸波特性研究

  • 王登科 ,
  • 黄 昊 ,
  • 俞 快 ,
  • 张雪峰 ,
  • 董星龙
展开
  • 大连理工大学 三束材料改性重点实验室,材料科学与工程学院, 大连 116023

收稿日期: 2008-07-10

  修回日期: 2008-09-08

  网络出版日期: 2009-03-20

Synthesis and Microwave Absorption of the Silica-coated Fe Nanocomposites

  • WANG Deng-Ke ,
  • HUANG Hao ,
  • YU Kuai ,
  • ZHANG Xue-Feng ,
  • DONG Xing-Long
Expand
  • State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China

Received date: 2008-07-10

  Revised date: 2008-09-08

  Online published: 2009-03-20

摘要

采用非平衡物理气相蒸发法在氢气氩气混合气氛下制备了氧化硅包覆铁“壳/核”型纳米复合粒子. 通过X射线衍射(XRD)、透射电子显微镜(TEM)和能谱分析(EDS)等方法表征了纳米复合粒子的相组分、结构以及颗粒形貌. 结果表明,制备的氧化硅包覆铁纳米复合粒子的尺寸在50nm左右,在铁纳米粒子的表面还出现了非晶态的氧化硅纳米棒,长度为150~200nm. 利用电磁参数模拟微波吸收特性得出,涂层厚度为1.79mm时,在15.4GHz频率处达到最小反射损耗值为-14.5dB,反射损耗在8~18GHz的频段低于-10dB,且损耗机制为自然共振.

本文引用格式

王登科 , 黄 昊 , 俞 快 , 张雪峰 , 董星龙 . 氧化硅包覆铁“壳/核”型纳米复合粒子的制备及其吸波特性研究[J]. 无机材料学报, 2009 , 24(2) : 340 -344 . DOI: 10.3724/SP.J.1077.2009.00340

Abstract

Silica-coated Fe nanocomposites were prepared by the DC arc plasma in a mixed atmosphere of hydrogen (H2) and argon (Ar). The phase structure, composition and morphology of silica-coated Fe nanocomposites were examined by X-ray diffraction(XRD), transmission electron microscope(TEM) and electron energy dispersive spectroscope(EDS). The results show that the mean size of silica-coated Fe nanocomposites is about 50nm, and the amorphous silica which cover BCC-Fe cores form nanorods with the length of 150-200nm. The growth mechanism of silicacoated Fe nanocomposites is governed by an extended vaporliquidsolid mechanism and Fe nanoparticles acted as a catalyst for the growth of the nanorods. Its electromagnetic parameters are measured in the range from 2GHz to 18GHz. It is calculated that the maximum reflection loss of silica-coated Fe nanocomposites can reach -14.5dB at 15.4GHz with 1.79mm in thickness, and the bandwidth with a reflection loss less than -10dB is from 8-18GHz. The indepth study of relative complex permittivity and permeability reveals that the excellent microwave absorption properties are the consequence of a proper EM match in microstructure. And the loss mechanism is natural resonance, as the consequence of the increased surface anisotropic energy for nanosized particles.

参考文献

[1]Bregar V B. IEEE Transactions on Magnetics, 2004, 40(3): 1679-1684.
[2]Xu P, Han X, Jiang J, et al. Journal of Physical Chemistry C, 2007, 111(34): 12603-12608.
[3]Pinho M S, Gregori M L, Rnunes R C. European Polymer Journal, 2002, 38(11): 2321-2327.
[4]Itoh M, Liu J R, Horikawa T, et al. Journal of Alloys and Compounds, 2006, 408412(12): 1400-1403.
[5]Li X, Yang H B, Fu W Y, et al. Materials Science and Engineering B, 2006, 135(1): 38-43.
[6]Stonier R A. Sampe Journal, 1992, 27(5): 1-6.
[7]Chen Y J, Cao M S, Tian Q, et al. Materials Letters, 2004, 58(9):1481-1484.
[8]Zhou Y H, He Q S, Zheng X J. The European Physical Journal E, 2004, 17(445): 181-187.
[9]Dishovski N. IEEE Transactions on Magnetics, 1994, 30(2): 969-971.
[10]Miyata Y. IEEE Transactions on Magnetics, 1997, 33(5): 3427-3429.
[11]Xiao H M, Liu X M, Fu S Y. Composites Science and Technology, 2006, 66(13): 2003-2008.
[12]Peng C H, Wang H W, Kan S W, et al. Journal of Magnetism and Magnetic Materials, 2004, 284(1): 113-119.
[13]邹桂真, 曹茂盛, 张 亮, 等(ZHOU Gui-Zhen, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21(4): 797-802.
[14]Zhou Y, Kang Y Q, Fang X Y, et al. Chinese Physics Letters, 2008, 25(5): 1902-1904.
[15]Yoshio Kobayashi, Mitsuru Horie, Mikio Konno, et al. Journal of Physical Chemistry B, 2003, 107(30): 7420-7425.
[16]Wu M Z, Zhang Y D, Hui S, et al. Journal of Applied Physics, 2002, 92(11): 6809-6812.
[17]Hiroyuki Nishikawa, Taiji Shiroyama, Ryuta Nakamura, et al. Physical Review B, 1992, 45(2): 586-591.
[18]Yu D P, Hang Q L, Ding Y, et al. Applied Physics Letters, 1998, 73(21): 3076-3078.
[19]Zhang X F, Dong X L, Huang H, et al. Acta Materialia, 2007, 55(11): 3727-3733.
[20]Dean J A. Lange’s Handbook of Chemistry, 14th ed. New York: McGraw-Hill, 1992.
[21]Markschlger P, Lukhaub W. Surface and Coatings Technology, 1996, 86-87(1): 279-284.
[22]Dong X L, Zhang Z D, Jin S R, et al. Journal of Applied Physics, 1999, 86(12): 6701-6706.
[23]Dong X L, Zhang Z D, Zhao X G, et al. Journal of Materials Research, 1999, 14(5): 1782-1790.
[24]Dong X L, Zhang Z D, Jin S R, et al. Nanostructure Materials, 1998, 10(4): 585-592.
[25]Zhang X F, Dong X L, Huang H, et al. Journal of Physics D: Applied Physics, 2007, 40(17): 5383-5387.
[26]Ramo S, Whinnery J R, Duzer T V. Fields and Waves in Communication Electronics, 2nd edition. New York: Wiley, 1984: 181.
[27]Luo X C, Chung D L. Carbon, 2001, 39(7): 985-990.
[28]张雪峰. 纳米复合粒子的合成及电磁响应特性研究. 大连理工大学博士论文, 2008.
[29]Lu B, Dong X L, Huang H, et al. Journal of Magnetism and Magnetic Materials, 2008, 320(6): 1106-1111.
[30]Zhang X F, Dong X L, Huang H, et al. Materials Science and Engineering A, 2007, 454-455(1): 211-215.
[31]Yusoff A N, Abdullah M H, Ahmad S H, et al. Journal of Applied Physics, 2002, 92(2): 876-882.
[32]Naito Y, Suetake K. IEEE Transactions on Microwave Theory and Techniques,1971, 19(1):65.
[33]Liu J R, Itoh M, Machida K. Applied Physics Letters, 2006, 88(6): 062503-1-3.
[34]Zhang X F, Dong X L, Huang H, et al. Applied Physics Letters, 2006, 89(5): 053115-1-3.
文章导航

/