研究论文

ZnO棒晶阵列薄膜的水溶液法生长

  • 刘晓新 ,
  • 靳正国 ,
  • 王惠 ,
  • 赵娟 ,
  • 刘志锋
展开
  • 1. 天津大学材料学院 先进陶瓷与加工技术教育部重点实验室, 天津 300072;
    2. 天津大学分析中心, 天津大学设备处, 天津 300072

收稿日期: 2005-08-15

  修回日期: 2005-11-07

  网络出版日期: 2006-07-20

Preparation of ZnO Films with Rod Crystal Arrays by Aqueous Solution Method

  • LIU Xiao-Xin1 ,
  • JIN Zheng-Guo1 ,
  • WANG Hui2 ,
  • ZHAO Juan1 LIU Zhi-Feng1
Expand
  • 1. Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China;
    2. Analytical Institute of Tianjin University, Tianjin University, Tianjin 300072, China

Received date: 2005-08-15

  Revised date: 2005-11-07

  Online published: 2006-07-20

摘要

采用低温水溶液法, 在涂覆ZnO种子层的ITO基底上制备了高度取向的ZnO棒晶阵列, 考察了棒晶的生长过程以及生长液浓度、生长时间对薄膜形貌的影响. 用扫描电子显微镜(SEM),X射线衍射(XRD), 场发射扫描显微镜(FESEM)以及高分辨透射电镜(HRTEM)对ZnO纳米棒的结构和形貌进行了表征. 结果表明, ZnO薄膜的形貌强烈依赖于生长溶液的浓度和生长时间, ZnO棒是单晶, 属于六方纤锌矿结构, 具有沿(002)晶面择优生长的特征, 生长方式为层层台阶生长, 反应时间达到48h后, 通过二次生长形成特殊的板状晶.

本文引用格式

刘晓新 , 靳正国 , 王惠 , 赵娟 , 刘志锋 . ZnO棒晶阵列薄膜的水溶液法生长[J]. 无机材料学报, 2006 , 21(4) : 999 -1004 . DOI: 10.3724/SP.J.1077.2006.00999

Abstract

Highly c-oriented ZnO films were prepared on ZnO buffer-coated ITO substrate by a solution method at 80℃. The effects of precursor concentration and growth time on the morphology of the films were investigated. The structure, morphology were characterized by using X-ray diffraction, transmission electron microscope, scanning electron microscope, field emission scanning electron
microscope. The results show that the morphology of ZnO films is strongly dependent on the precursor concentration and growth time, all the ZnO rods belong to the hexagonal wurtzite structure . The growth manner of ZnO is layer by layer. Special lath-like crystals formed by secondary growth when growth time was 48h.

参考文献

1 Look D C. Mater. Sci. Eng. B, 2001, 80(1-3): 383-387.
2 Govender K, Boyle S, David P, O'Brien, et al. Adv. Mater., 2002, 14(17): 1221-1224.
3 Saito N, Haneda H, Sekiguchi T, et al. Adv. Mater., 2002, 14(6): 418.
4 Liang S, Sheng H, Liu Y, et al. J. Cryst. Growth, 2001, 225(2-4): 110.
5 Lee J Y, Choi Y S, Kim J H, et al. Thin Solid Films, 2002, 403: 533.
6 Golego N, Studenikin S A, Cocivera M. J. Electrochem. Soc., 2000, 147(4): 1592.
7 Rensmo H, Keis K, Lindstr\ddot om H. J. Phys. Chem., 1997, 101(14): 2598
8 Keis K, Vayssieres L, Lindquist S-E, et al. Nanostruct. Mater., 1999, 12(1): 487.
9 Ham H, Shen G Z, Cho J H, et al. Chem. Phys. Lett., 2005, 404(1-3): 69-73.
10 Wu J J, Liu S C. Adv. Mater., 2002, 14(3): 215-218.
11 Jie J S, Wang G Z, Wang Q T, et al. J. Phys. Chem. B, 2004, 108(32): 11976-11980.
12 Vayssieres L, Keis K, Hagfeldt A. J. Phys. Chem. B, 2001, 105(17): 3350-3352.
13 Vayssieres L. Adv. Mater., 2003, 15(5): 464-466.
14 王凯雄,水化. 北京: 化学工业出版社, 2001. 26-27.
15 Chemseddine A, Moritz T. Eur. J. Inorg. Chem., 1999, 235-245.
16 Kingery W D, Bowen H K, Uhlmann D R. Introduction to ceramics, Wiley, 1976. 126-128.
文章导航

/