研究论文

由多孔型阳极氧化铝制备纳米氧化铝纤维

  • 潘金芝 ,
  • 赵红 ,
  • 陈春焕 ,
  • 李国军 ,
  • 任瑞铭
展开
  • 大连交通大学材料科学与工程学院, 大连 116028

收稿日期: 2005-08-01

  修回日期: 2005-10-12

  网络出版日期: 2006-07-20

Fabrication of Alumina Nano-fibers from PAAO

  • PAN Jin-Zhi ,
  • ZHAO Hong ,
  • CHEN Chun-Huan ,
  • LI Guo-Jun ,
  • REN Rui-Ming
Expand
  • College of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China

Received date: 2005-08-01

  Revised date: 2005-10-12

  Online published: 2006-07-20

摘要

利用磷酸溶液浸渍具有独特的六边形结构和组成的多孔型阳极氧化铝(PAAO), 获得了带状、棒状、管状等不同形貌的纳米氧化铝纤维. 用扫描电镜(SEM)、能谱仪和透射电镜(TEM)等手段对其形貌和组成进行了分析. 结果表明, 纳米氧化铝纤维是在阳极氧化铝的多孔层形成的, 且在浸渍过程中阻挡层和多孔层表现出完全不同的溶解趋势. PAAO孔壁的特殊结构和组成上的差异造成的择优溶解是不同形貌纳米氧化铝纤维形成的主要原因.

本文引用格式

潘金芝 , 赵红 , 陈春焕 , 李国军 , 任瑞铭 . 由多孔型阳极氧化铝制备纳米氧化铝纤维[J]. 无机材料学报, 2006 , 21(4) : 828 -832 . DOI: 10.3724/SP.J.1077.2006.00828

Abstract

Based on PAAO's unique cellular hexagon morphology and composition, various alumina fibers (nano-belts, nano-rods, and nano-tubes) were fabricated by simply employing a dilute acid etching method. Scanning electron microscope (SEM) incorporated with energy dispersive X-ray spectroscope (EDS) and transmission electron microscope (TEM) were applied to characterize these nano-fibers. It is proved that alumina nano-fibers are formed from the porous layer, while totally different behaviors of the barrier layer and the porous layer are showed during the etching process. The orientated etching, resulted from PAAO's particular morphology and composition, is believed to be the main reason that explains the formation of different alumina nano-fibers.

参考文献

1 陈立富, 严勇军, 高桂英(Chen Li-Fu, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 1997, 25(3): 339-343.
2 Venkatesh R, Royramanan S. Journal of the European Ceramic Society, 2000, 20: 2543-2549.
3 Harold G, Sowman L. Ceramic Bull., 1988, 67(12): 1911-1916.
4 Sumio Sakka. Am. Ceramic Soc. Bull., 1985, 64(11): 1463-1466.
5 Kostikov V I, Makhova M F, Sergeev V P. Ceramic Eng. Sci. Pro., 1994, 14: 557-566.
6 Bunsell A R, Berger M H. Key Eng. Mater., 1997, 15: 127-131.
7 Satishkumar B C, Govindaraj A, Vogl E M, et al. J. Mater. Res., 1997, 12: 604-610.
8 Tang C C, Fan C C, Li P, et al. J. Cryst. Growth, 2001, 224: 117-121.
9 Zou Jianping, Pu Lin, Bao Xiaomao, et al. App. Phy. Lett., 2002, 80(6): 1079-1081.
10 Xiao Z L, Han C Y , Welp U, et al. Nano Lett., 2002, 11(2): 1293-1297.
11 Liu S M, Zhang W D, liu Z L, et al. Applied Catalysis A: General, 2005, 287: 108-115.
12 Yuan Z H, Huang H, Fan S. Adv. Mater., 2002, 14: 303-306.
13 Tian Y T, Meng G W, Gao T, et al. Nanotechnology, 2004, 15: 189-191.
14 Thompson G E, Furneaux R C, ARichardson J. Nature, 1978, 272: 433-435.
15 Thompson G E, Wood G C. Nature, 1981, 290: 230-232.
16 Keller F, Hunter M S, Robinson D L. J. Electrochem. Soc., 1953, 100: 411-419.
17 Diggle J W, Downie T C, Groulding C W. Chem. Rev., 1969, 69: 365-405.
18 Pu Lin, Chen Zhiqiang, Tan Chao, et al. Chin. Phys. Lett., 2002, 19(3): 391-394.
文章导航

/