研究论文

低温燃烧合成法制备 Ce0.8Y0.2O1.9 纳米粉体

  • 徐红梅 ,
  • 严红革 ,
  • 陈振华
展开
  • 湖南大学材料科学与工程学院, 长沙 410082

收稿日期: 2005-08-15

  修回日期: 2005-11-18

  网络出版日期: 2006-07-20

Nano-scale Ce0.8Y0.2O1.9 Powders Prepared by Low Temperature Combustion
Synthesis Technique

  • XU Hong-Mei ,
  • YAN Hong-Ge ,
  • CHEN Zhen-Hua
Expand
  • College of Materials Science and Engineering, Hunan University, Changsha 410082, China

Received date: 2005-08-15

  Revised date: 2005-11-18

  Online published: 2006-07-20

摘要

采用柠檬酸做还原剂, 硝酸盐做氧化剂, 利用溶胶-凝胶低温燃烧合成工艺制备了纳米晶Ce0.8Y0.2O1.9固溶体. 用TG/DTA、XRD、FTIR、Raman和TEM等检测手段研究了柠檬酸用量、前驱体溶液的pH值、氧化剂的用量等工艺参数对凝胶的形成、分解及产物特性的影响. 结果表明, 通过控制柠檬酸的用量、溶液的pH值, 可以获得稳定的凝胶. 改变氧化剂的用量, 可以获得颗粒尺寸在5~40nm范围的超细粉体. Raman研究表明, 随氧化剂含量的增加, 氧空位浓度增大.

本文引用格式

徐红梅 , 严红革 , 陈振华 . 低温燃烧合成法制备 Ce0.8Y0.2O1.9 纳米粉体[J]. 无机材料学报, 2006 , 21(4) : 809 -814 . DOI: 10.3724/SP.J.1077.2006.00809

Abstract

Nanocrystalline Ce0.8Y0.2O1.9 solid solution was synthesized by a gel combustion
technique using citric acid as reductant and nitrates as oxidants. The effects of processing parameters, such as the amount of citric acid, the pH value of solution, the amount of oxidants on the gel formation and the powders characteristics of the product were investigated by using TG/DTA, XRD, FTIR, Raman and TEM. The stable gel was obtained by controlling the amount of citric acid and the pH value.
The nanocrystalline Ce0.8Y0.2O1.9 powders in the range of 5nm to 40nm were
obtained by changing the amount of oxidants. The Raman investigation showed that the oxygen vacancy concentration increased with the increase of the amount of oxidants.

参考文献

1 Chan S H, Chen X J, Khor K A. Solid State Ionics, 2003, 158: 29-43.
2 Boulc'h F, Djurado E. Solid State Ionics, 2003, 157: 335-340.
3 Huang K, Goodenough J B. J. Alloys Compd, 2000, 303-304: 454-464.
4 Marina O A, Bagger C, Primdahl S, et al. Solid State Ionics, 1999, 123: 199-208.
5 Tsoga A, Naoumidis A, Stover D. Solid State Ionics, 2000, 135: 403-409.
6 Piacente V, Bardi G, Maluspina L, et al. Journal of Chemical Physics, 1973, 59: 31-36.
7 Herna\hat A ndez, Jurado M T, Dura\hat A n J R, et al. Solid State Ionics, 1992, 50: 167-173.
8 Yashima M, Kakihana M, Ishii K, et al. J. Mater. Res., 1996, 11: 1410-1420.
9 Yashima M, Ohtake K, Kakihana M, et al. J. Mater. Sci. Lett., 1994, 13: 1564-1566.
10 Caruso R, Benav\o\hat A E, Sanctis O, et al. J. Mater. Res., 1997, 12: 2594-2601.
11 Chatterjee M, Chatterjee A, Ganguli D. Ceramics International, 1992, 18: 43-49.
12 Tsoga A, Naoumidis A, Stover D. Solid State Ionics, 2000, 135: 403-409.
13 Biamino S, Badini C. Journal of the European Ceramic Society, 2004, 24: 3021-3034.
14 Torrens R S, Sammes N M, Tompsett G A. Solid State Ionics, 1998, 111: 9-15.
15 Li Fei, Hu Keao, Li Jianlin, et al. J. Nucl. Mater., 2002, 300: 82-88.
文章导航

/