摘要: 采用简单的化学镀方法, 在相对低的温度下制备了具有核-壳结构的SiC-Ni纳米复合颗粒. XRD和TEM分析结果表明,纳米Ni晶吸附在SiC颗粒表面, 可以形成一层连续且致密的Ni包覆层. 基于化学镀和催化理论, 初步分析了化学镀核壳结构形成机理. 利用波导法研究了纳米SiC颗粒和复合颗粒在8~12GHz的微波介电特性. 研究结果表明, 复合颗粒的介电常数实部(ε')和介电损耗角正切值(tanδ=ε''/ε')都明显增强, 并给出相应的理论模型.
A nanoscale core-shell structure of β-SiC P-Ni was prepared at lower temperature by a simple and convenient electroless plating approach. The core-shell nanoparticles were characterized by means of XRD and TEM. The results show that β-SiC nanoparticles (β-SiC P) are coated by a uniform and continuous nickel
shell. The mechanism based on the theory of electroless plating and palladium
catalysis was discussed in details about core-shell structure of β-SiC P-Ni. Dielectric permittivities of the original silicon carbide nanoparticles (β-SiC P) and nickel-coated β-SiC P in paraffin wax were measured respectively in the GHz frequency range from 8 to 12GHz. The real part and dielectric loss tangent of the nickel-coated β-SiC P were significantly enhanced. The origin of the enhancement was discussed in theory, and also explained by discussing the change of surface electrical conduction behavior of β-SiC P and nickel-coated β-SiC P.
1 Che R C, Peng L M, Duan X F, et al. Adv. Mater., 2004, 16: 401-404.
2 Wadhawan A, Garrett D, Perez J M. Appl. Phys. Lett., 2003, 83: 2683-2685.
3 Wu Y H, Kong L B. Appl. Phys. Lett., 2004, 84: 4956-4958.
4 Watts P C P, Ponnampalam D R, Hsu W K, et al. Chem. Phys. Lett., 2003, 378: 609-614.
5 Gueorguiev G K, Pacheco J M, Tomanek D. Phys. Rev. Lett., 2004, 92: 215501-215505.
6 Chen Y J, Cao M S, Wang T H, et al. Appl. Phys. Lett., 2004, 84: 3367-3369.
7 Zhao D L, Zhao H S, Zhou W C. Physica E, 2001, 9: 679-685.
8 Imholt T J, Dyke C A, Hasslacher B, et al. Chem. Mater., 2003, 15: 3969-3794.
9 Zhang B, Li J B, Sun J J, et al. J. Eur. Ceram. Soc., 2002, 22: 93-99.
10 Microwave processing of ceramics - an overview. 3rd edition, edited
by W. H. Sutton, R. L. Beatty, M. F. Iskander and W. H. Sutton. Materials Research Society, San Francisco, 1992.
11 Morkoc H, Strite S, Guo G B. J. Appl. Phys., 1994, 76: 1363-1398.
12 Krstic V D. Am J. Ceram. Soc., 1992, 75: 170-175.
13 Bardal A. J. Mater. Sci., 1993, 28 (10): 2699-2703.
14 Chen C K, Feng H M, Lin H C. Thin Solid Films., 2002, 416: 31-37.
15 Hou Y C, Chen Y S, Amro N A, et al. Chem. Commun., 2000, 12: 1831-1832.
16 Mizukoshi Y, Fujimoto T, Nagata Y, et al. J. Phys. Chem., B 2000, 104: 6028-6032.
17 Jang J S, Lim B K. Ange. Chem. Int. Edit., 2003, 42: 5600-5603.
18 张锐, 王海龙, 高濂, 等(ZHANG Rui, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 294-498.
19 张锐, 高濂, 郭景坤(ZHANG Rui, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (3): 575-579.
20 张巨先, 侯耀永, 高陇桥, 等(ZHANG Ju-Xian, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 1998, 26 (6): 762-767.
21 Chen Y J, Cao M S, Xu Q, et al. Surf. Coat. Tech., 2003, 172: 90-94.
22 Grosiean A, Rezrazi M, Tachez M. Surf. Coat. Technol., 1997, 96: 300-304.
23 Leon C, Rivera A, Varez A, et al. J. Phys. Rev. Lett., 2001, 86: 1279-1281.
24 Rao Y, Qgitani S, Koh P, et al. Electronic Components and Technology Conference. 2000. 183-187.
25 Shim J, Kim H T. Electro. Lett., 1998, 34: 1833-1834.