一种可见光响应纳米 TiO2粉体的光响应特性表征
收稿日期: 2005-07-16
修回日期: 2005-09-22
网络出版日期: 2006-07-20
Characterization of Optical Response Properties for a Nanosized TiO2 with Visible-light Response
1. Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
2. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Received date: 2005-07-16
Revised date: 2005-09-22
Online published: 2006-07-20
周时凤 , 洪樟连 , 赵芙蓉 , 樊先平 , 王民权 . 一种可见光响应纳米 TiO2粉体的光响应特性表征[J]. 无机材料学报, 2006 , 21(4) : 783 -788 . DOI: 10.3724/SP.J.1077.2006.00783
Nanosize-TiO2 podwers with visible-light response and photocatalytic capability were synthesized by hydrothermal process with organics as solvents. Results of diffuse reflectance spectra (DRS) for solid TiO2 powders show that the visible light response properties of present nanosize-TiO2 are similar to that of modified TiO2, which have strong visible-light response in visible-light region. On the other hand, UV-Vis absorption spectra of TiO2 suspensions show that the optical properties of present nanosize-TiO2 are similar to that of intrinsic TiO2, and no obvious visible light absorption detected. Such difference in optical properties via DRS and UV-Vis
spectra for present nanosize-TiO2 is attributed to the difference status of nanosize-TiO2 existing as solid powder or dilute suspensions. Underthe conditions of extreme dilute suspensions, photon induced electron transition accompanied by phonon excitation may be degenerated while it is not the case for solid powders. For present photocatalyst with high activity under visible light
irradiation, it is necessary to combine two methods to evaluate the accurate information of the absorption edge and optical response properties.
1 Fujishima A, Honda K. Nature, 1972, 238(5358): 37-38.
2 Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98(51): 13669-13679.
3 Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(5528): 269-271.
4 Khan S U M, Al-Shahry M, Ingler W B. Science, 2002, 297(5590): 2243-2245.
5 Perera V P S, Pitigala P K D D P, Jayaweera P V V, et al. J. Phys. Chem. B, 2003, 107(50): 13758-13761.
6 Gal D, Mastai Y, Hodes G. J. Appl. Phys., 1999, 86(10): 5573-5577.
7 Kubelka P, Munk F. Z. Tech. Phys. (Leipzig), 1931, 12: 593-601.
8 Zhang Q H, Gao L. Langmuir, 2004, 20(22): 9821-9827.
9 Lagowski J. Surf. Sci., 1994, 299/300: 92-101.
10 Kortum G, Reflectance Spectroscopy. Berlin: Springer, 1969.
11 杨一军, 等(Yang Yijun, et al). 无机材料学报(J. Inorganic. Materials.), 2003, 18(2): 393-399.
12 Gatos H C, Lagowski J. J. Vac. Sci. Technol., 1973, 10: 130-135.
13 Kortum G. Reflectance Spectroscopy. Berlin: Springer, 1969.
14 Wendlandt W W, Hecht H G. Reflectance Spectroscopy (Interscience, New York, 1966).
15 Lepore G P, Langford C H, V\acute ichov\acute a J. J. Photochem. Photobiol.
A: Chem, 1993, 75(1): 67-75.
16 Tang P S, Hong Z L, Zhou S F, et al. Chin. J. Catal., 2004, 25(12): 925-927.
17 唐培松, 等(Tang Peisong, et al). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2004, 33(suppl 3): 277-280.
18 洪樟连, 等(Hong Zhanglian, et al). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2004, 33(suppl 3): 65-68.
19 唐培松, 等(Tang Peisong, et al). 环境科学学报(Acta Scientiae Circumstantiae), 2005, 25(8): 1021-1028.
20 Poznyak S K, Talapin D V, Kulak A I. J. Phys. Chem. B, 2001, 105(21): 4816-4823.
21 何超等(He Chao, et al). 无机材料学报(J. Inorganic Materials), 2002, 17(5): 1025-1033.
22 Kormann C, Bahnemann D W, Hoffmann M R. J. Phys. Chem., 1988, 92(18): 5196-5201.
23 张青红, 等(Zhang Qinghong, et al). 无机材料学报(J. Inorganic Materials), 2000, 15(5): 929-934.
24 Cabrera M I, Alfano O M, Cassano A E. J. Phys. Chem., 1996, 100(51): 20043-20050.
25 Zou Z G, Ye J H, Sayama K, et al. Nature, 2001, 414(6864): 625-627.
26 Cho Y M, Choi W Y, Lee C H, et al. Environ. Sci. Technol., 2001, 35(5): 966-970.
27 张青红, 等(Zhang Qinghong, et al). 无机材料学报(J. Inorganic Materials), 2001, 16(5): 833-838.
28 Klaas J, Schulz-Ekloff G, Jaeger N. J. Phys. Chem. B, 1997, 101(8): 1305-1311.
29 Lettmann C, Hildenbrand K, Kisch H, et al. Appl. Catal. B-Environ., 2001, 32(4): 215-227.
30 Niederberger M, Garnweitner G, Krumeich F, et al. Chem. Mater., 2004, 16(7): 1202-1208.
31 Zou B S, Xiao L Z, Li T J, et al. Appl. Phys. Lett., 1991, 59(15): 1826-1828.
32 Ramakrishna G, Ghosh H N. Langmuir, 2003, 19(3): 505-508.
33 Wang Y, Herron N. J. Phys. Chem., 1991, 95(2): 525-532.
34 Anpo M, Shima T, Kodama S, et al. J. Phys. Chem., 1987, 91(16): 4305-4310.
35 Ohno T, Sarukawa K, Tokieda K, et al. J. Catal., 2001, 203(1): 82-86.
36 Toyoda T, Tsuboya I. Rev. Sci. Instrum., 2003, 74(1): 782-784.
37 Serpone N, Lawless D, Khairutdinov R. J. Phys. Chem., 1995, 99(45)
/
〈 |
|
〉 |