研究论文

硫掺杂纳米 TiO2的掺杂机理及可见光催化活性的研究

  • 周武艺 ,
  • 曹庆云 ,
  • 唐绍裘 ,
  • 刘英菊
展开
  • 1. 华南农业大学理学院应用化学系, 广州 510642;
    2. 华南农业大学动科院实验中心, 广州 510642;
    3. 湖南大学
    材料科学与工程学院, 长沙 410082

收稿日期: 2005-08-12

  修回日期: 2005-11-18

  网络出版日期: 2006-07-20

Doping Mechanism and Visible-light Photocatalytic Activity of S-doped TiO2 Nano Powders

  • ZHOU Wu-Yi ,
  • CAO Qing-Yun ,
  • TANG Shao-Qiu ,
  • LIU Ying-Ju
Expand
  • 1. Department of Applied Chemistry, College of Science, South-China Agricultural University, Guangzhou 510642, China;
    2.
    Center of Testing, College of Animal Science, South-China Agricultural University, Guangzhou 510642, China;
    3.
    College of Materials Science and Engineering, Hunan University, Changsha 410082, China

Received date: 2005-08-12

  Revised date: 2005-11-18

  Online published: 2006-07-20

摘要

用酸催化溶胶-凝胶技术合成了硫掺杂纳米TiO2光催化剂粉末. 光催化降解亚甲基蓝实验结果表明, 当硫脲与钛酸丁酯摩尔比S/Ti为3.5时, 经500℃热处理后的催化剂的光催化活性最佳. 通过XRD、DRS和XPS等研究表明硫掺杂导致二氧化钛晶粒尺寸细化, 并有效抑制了相变温度. 在热处理过程中硫由S2-被氧化为S4+并进入到二氧化钛的晶格中取代了部分Ti4+位, 导致了晶格的畸变, 带隙变窄, 从而导致对光的吸收发生了向可见光区移动.

本文引用格式

周武艺 , 曹庆云 , 唐绍裘 , 刘英菊 . 硫掺杂纳米 TiO2的掺杂机理及可见光催化活性的研究[J]. 无机材料学报, 2006 , 21(4) : 776 -782 . DOI: 10.3724/SP.J.1077.2006.00776

Abstract

S-doped TiO2 nanopowders were prepared by a sol-gel method with acid as the catalyst. The results of photocatalytic degradation methylene blue demonstrated that the doped TiO2 exhibited the highest photocatalytic activity when the mole ratio of thiourea and tetrabutyltitanate[Ti(OC4H9)4] was 3.5 and the doped TiO2 was calcined at 500℃ for 2h. The results from the X-ray diffraction (XRD), diffusion reflectance spectra (DRS) and X ray photoelectron spectroscopy (XPS) showed that sulfur doping controlled the increasing of nano TiO2 and restrained
the transformation from anatase to rutile. S2- was
oxidezed to S4+ during
the thermal treatment. The trance of sulfur ions (S4+)
substitued partially
for the lattice titanium ions (Ti4+), which resulted in
the localized crystal
deformation of TiO2 and the bandgap between valence band
and conduction
band narrowed, and the absorption light transferred to
visible light region.

参考文献

1 Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98(51): 13669-13679.
2 Paola A D, Marei G, Palmisano L, et al. J. Phys.
Chem. B, 2002, 106(3): 637-645.
3 Yamakata A, Ishibashi T, Onishi H. J. Phys. Chem. B,
2002, 106(35): 9122-9125.
4 Ranjit KT, Willner I, Bossmann S B, et al. J. Phys.
Chem. B, 1998, 102(47): 9397-9403.
5 Anpo M, Takeuchi M. J. Catal., 2003, 216: 505-516.
6 周武艺, 唐绍裘(ZHOU Wu-Yi, et al). 硅酸盐学报(Journal
of The Chinese Ceramic
Society), 2004, 32(10): 1203-1208.
7 Asahi R, Morikawa T, Ohwaki, et al. Science, 2001,
293(13): 269-271.
8 Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B,
2003, 107: 5483-5486.
9 Diwald Oliver, Thompson T L, Zubkow T, et al. J.
Phys. Chem. B, 2004, 108: 6004-6008.
10 Gole J L, Stout J D. J. Phys. Chem. B, 2004, 108:
1230-1240.
11 Takeda N, Iwata N, Torimoto T, et al. J. Catal.,
1998, 177, 240-246.
12 Tsumura T, Kojitani N, Izumi K, et al. J. Mater.
Chem., 2002, 12: 1391-1396.
13 Janus M, Tryba B, Inagaki M, et al. Appl. Catal. B:
Environ., 2004, 52: 61-67.
14 Hattori A, Tada H. J. Sol-gel. Sci. Tech., 2001,
22: 47-52.
15 Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002,
14: 3808-3816.
16 Umebayashi T, Yamaki T, Tamaka S, et al. Chem.
Lett., 2003, 32(4): 330-331.
17 Umebayashi T, Yamaki T, Itoh H. Appl. Phy. Lett.,
2002, 81(3): 454-564.
18 Lettmann C, Heike H, Maier W F. Angew. Chem. Int.
Ed., 2001, 40(17): 3160-3164.
19 Tanaka Y, Suganuma M. J. Sol-Gel. Sci. Technol.,
2001, 22(1): 83-89.
20 Hebenstreit E, Hebenstreit W, Eisler H, et al. Surf.
Sci., 2001, 470: 374-360.

文章导航

/