硫掺杂纳米 TiO2的掺杂机理及可见光催化活性的研究
1. 华南农业大学理学院应用化学系, 广州 510642;
2. 华南农业大学动科院实验中心, 广州 510642;
3. 湖南大学材料科学与工程学院, 长沙 410082
收稿日期: 2005-08-12
修回日期: 2005-11-18
网络出版日期: 2006-07-20
Doping Mechanism and Visible-light Photocatalytic Activity of S-doped TiO2 Nano Powders
1. Department of Applied Chemistry, College of Science, South-China Agricultural University, Guangzhou 510642, China;
2. Center of Testing, College of Animal Science, South-China Agricultural University, Guangzhou 510642, China;
3. College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Received date: 2005-08-12
Revised date: 2005-11-18
Online published: 2006-07-20
周武艺 , 曹庆云 , 唐绍裘 , 刘英菊 . 硫掺杂纳米 TiO2的掺杂机理及可见光催化活性的研究[J]. 无机材料学报, 2006 , 21(4) : 776 -782 . DOI: 10.3724/SP.J.1077.2006.00776
S-doped TiO2 nanopowders were prepared by a sol-gel method with acid as the catalyst. The results of photocatalytic degradation methylene blue demonstrated that the doped TiO2 exhibited the highest photocatalytic activity when the mole ratio of thiourea and tetrabutyltitanate[Ti(OC4H9)4] was 3.5 and the doped TiO2 was calcined at 500℃ for 2h. The results from the X-ray diffraction (XRD), diffusion reflectance spectra (DRS) and X ray photoelectron spectroscopy (XPS) showed that sulfur doping controlled the increasing of nano TiO2 and restrained
the transformation from anatase to rutile. S2- was oxidezed to S4+ during
the thermal treatment. The trance of sulfur ions (S4+) substitued partially
for the lattice titanium ions (Ti4+), which resulted in the localized crystal
deformation of TiO2 and the bandgap between valence band and conduction
band narrowed, and the absorption light transferred to visible light region.
Key words: nano TiO2; sulfur doping; mechanism; visible light catalytic degradation
1 Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98(51): 13669-13679.
2 Paola A D, Marei G, Palmisano L, et al. J. Phys. Chem. B, 2002, 106(3): 637-645.
3 Yamakata A, Ishibashi T, Onishi H. J. Phys. Chem. B, 2002, 106(35): 9122-9125.
4 Ranjit KT, Willner I, Bossmann S B, et al. J. Phys. Chem. B, 1998, 102(47): 9397-9403.
5 Anpo M, Takeuchi M. J. Catal., 2003, 216: 505-516.
6 周武艺, 唐绍裘(ZHOU Wu-Yi, et al). 硅酸盐学报(Journal of The Chinese Ceramic
Society), 2004, 32(10): 1203-1208.
7 Asahi R, Morikawa T, Ohwaki, et al. Science, 2001, 293(13): 269-271.
8 Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107: 5483-5486.
9 Diwald Oliver, Thompson T L, Zubkow T, et al. J. Phys. Chem. B, 2004, 108: 6004-6008.
10 Gole J L, Stout J D. J. Phys. Chem. B, 2004, 108: 1230-1240.
11 Takeda N, Iwata N, Torimoto T, et al. J. Catal., 1998, 177, 240-246.
12 Tsumura T, Kojitani N, Izumi K, et al. J. Mater. Chem., 2002, 12: 1391-1396.
13 Janus M, Tryba B, Inagaki M, et al. Appl. Catal. B: Environ., 2004, 52: 61-67.
14 Hattori A, Tada H. J. Sol-gel. Sci. Tech., 2001, 22: 47-52.
15 Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002, 14: 3808-3816.
16 Umebayashi T, Yamaki T, Tamaka S, et al. Chem. Lett., 2003, 32(4): 330-331.
17 Umebayashi T, Yamaki T, Itoh H. Appl. Phy. Lett., 2002, 81(3): 454-564.
18 Lettmann C, Heike H, Maier W F. Angew. Chem. Int. Ed., 2001, 40(17): 3160-3164.
19 Tanaka Y, Suganuma M. J. Sol-Gel. Sci. Technol., 2001, 22(1): 83-89.
20 Hebenstreit E, Hebenstreit W, Eisler H, et al. Surf. Sci., 2001, 470: 374-360.
/
〈 |
|
〉 |