研究论文

复合半导体光催化材料ZnFe2O4-TiO2/SiO2结构与光响应性能研究

  • 赵春 ,
  • 钟顺和
展开
  • 天津大学化工学院, 天津 300072

收稿日期: 2005-07-11

  修回日期: 2005-08-26

  网络出版日期: 2006-07-20

Structure and Photo Absorption Property of Coupled Semiconductor ZnFe2O4-TiO2/SiO2

  • ZHAO Chun ,
  • ZHONG Shun-He
Expand
  • College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 2005-07-11

  Revised date: 2005-08-26

  Online published: 2006-07-20

摘要

采用溶胶-凝胶法制备了负载型复合半导体光催化材料ZnFe2O4-TiO2/SiO2, 并通过DTA-TG、XRD、XPS、Raman、TPR及UV-Vis DRS等实验技术对复合材料的晶体结构、表面组成及光响应性能进行了表征和评价. 结果表明: ZnFe2O4晶相以高分散状态存在于光催化材料的表面; ZnFe2O4与TiO2复合可使部分Fe3+进入体相TiO2的晶格中, 促进其由锐钛矿向金红石的相转变, 同时表面剩余的少量Zn2+聚集形成ZnO物相; TiO2的相变由体相开始, 随着ZnFe2O4含量的增加逐渐向表面扩展; SiO2的加入使活性组分更加分散, TiO2平均粒径<10nm; ZnFe2O4的加入明显拓宽了TiO2的吸光域, 并增强了对可见光的吸收.

本文引用格式

赵春 , 钟顺和 . 复合半导体光催化材料ZnFe2O4-TiO2/SiO2结构与光响应性能研究[J]. 无机材料学报, 2006 , 21(4) : 965 -971 . DOI: 10.3724/SP.J.1077.2006.00965

Abstract

ZnFe2O4-TiO2/SiO2 photocatalysts were prepared by a sol-gel method. Their crystal structure, surface compositions and photo absorption properties were investigated by techniques of differential thermal-thermal gravimetric analysis (DTA-TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, temperature programmed reduction (TPR) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The results show that ZnFe2O4 crystallites are highly dispersed on the surface of photocatalysts; a few of Fe3+
ions are embedded in the lattice of TiO2 through the couple of TiO2 and ZnFe2O4. Simultaneously, the excess Zn2+ ions on the surface are gathered to form ZnO. The phase transition of TiO2 starts from bulk and extends to surface with the increase in content of ZnFe2O4. The dispersity of active species, such as TiO2 and ZnFe2O4, is enhanced for the addition of SiO2 and the crystal sizes of TiO2 are smaller than 10nm. The UV absorption limit of photocatalyst tends to bathochromic shift and the percent absorption of visible light is obviously increased by the coupling effect of TiO2 and ZnFe2O4.

参考文献

1 Fujishima A, Honda K. Nature, 1972, 238 (5358): 37-38.
2 Akira F, Tata N R, Donald A T. J. Photochem. Photobio. C: Photochem. Rev., 2000, 1 (1): 1-21.
3 井立强, 徐自力, 孙晓君, 等. 催化学报, 2003, 24 (3): 175-180.
4 Yasumichi Matsumoto. Journal of Solid State Chemistry, 1996, 126: 227-234.
5 袁志好, 孙永昌, 王玉红, 等. 高等学校化学学报, 2004, 25 (10): 1875-1878.
6 Ping Cheng, Wei Li, Tianle Zhou, et al. Journal of photochemistry and photobiology A:
Chemistry, 2004, 168: 97-101.
7 王希涛, 钟顺和. 应用化学, 2001, 18 (11): 885-888.
8 张青红, 高濂, 孙静(ZHANG Qing-Hong, et al). 无机材料学报(Journal of inorganic Materials), 2002, 17 (3): 415-421.
9 李颖, 段玉然, 李维华. 光谱学与光谱分析, 2002, 22 (5): 783-786.
10 Zhang H, Banfield J F. Am. Mineral., 1999, 84: 528-535.
11 Miguel Pineda, Jos\acute e L G, Fierro, Jos\acute e M Palacios, et al. Applied Surface Science, 1997, 119: 1-10.
12 Zhang Y H, Chan Chak K, John F Porter, et al. Journal of Materials Research, 1998, 13 (9): 2602-2609.
13 van Dijhen A, Meulenkamp E A, Vanmmaekelbegh D, et al. J Phys Chem B, 2000, 104 (8): 1715-1723.
14 Anderson C, Bard A J. J. Phys. Chem. B, 1997, 101: 2611-2615.
15 季伟捷, 沈师孔, 李树本, 等. 分子催化, 1994, 8 (6): 403-411.
文章导航

/