研究论文

ZrB2/C复合材料的性能及微观结构研究

  • 李秀涛 ,
  • 史景利 ,
  • 郭全贵 ,
  • 翟更太 ,
  • 刘朗
展开
  • 1. 中国科学院山西煤炭化学研究所炭材料重点实验室, 太原 030001;
    2. 中国科学院研究生院, 北京 100049

收稿日期: 2005-08-15

  修回日期: 2005-10-10

  网络出版日期: 2006-07-20

Properties and Microstructure of ZrB2/C Composites

  • LI Xiu-Tao ,
  • SHI Jing-Li ,
  • GUO Quan-Gui ,
  • ZHAI Geng-Tai ,
  • LIU Lang
Expand
  • 1. Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese
    Academy of Sciences, Taiyuan 030001, China;
    2. Graduate school, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2005-08-15

  Revised date: 2005-10-10

  Online published: 2006-07-20

摘要

采用热压工艺制备了ZrB2/C 复合材料, 考察了ZrB2掺杂量对材料抗弯强度、热导率、电阻率的影响以及微观结构的变化. 结果表明: 随ZrB2含量增加, 材料抗弯强度和热导率不断升高, 在掺杂量为10%时, 抗弯强度达到最大值131MPa, 热导率达到161W/m·K的最大值, 此后, 抗弯强度和热导率随掺杂量增加而降低. 然而, 材料的电阻率随ZrB2含量的增加不断下降. 微观结构分析表明, 随着ZrB2掺杂量增加, 材料的石墨化度和微晶尺寸增大, 晶面层间距减小. 材料的微观结构强烈地影响着材料的力学、导电、导热等宏观性能.

本文引用格式

李秀涛 , 史景利 , 郭全贵 , 翟更太 , 刘朗 . ZrB2/C复合材料的性能及微观结构研究[J]. 无机材料学报, 2006 , 21(4) : 946 -952 . DOI: 10.3724/SP.J.1077.2006.00946

Abstract

ZrB2/C composites were prepared by a hot-pressing method. The influence of dopants on the flexural strength, thermal conductivity, electrical resistivity and microstructure of these composites was investigated. Results show that the flexural strength and thermal conductivity increase with increasing ZrB2 content up to a maximum of 131MPa and 161W/m·K at 10% addition, respectively. But the electrical resistivity reduces rapidly with increasing the concentration of ZrB2. Correlations between the content of dopant and properties and microstructure of ZrB2/C composites were also discussed.

参考文献

1 Fitzer E. Carbon, 1987, 25(2): 163-190.
2 Awasthi S, Wood J L. Adv. Ceram. Mater., 1988, 3(5): 449-451.
3 Luthra K L. Carbon, 1988, 26(2): 217-224.
4 Chang H W, Rusnak R M. Carbon, 1979, 17(5): 407-410.
5 Peng T C. Carbon, 1979, 17(2): 157-174.
6 Crocker P, Mcenaney B. Carbon, 1991, 29(7): 881-885.
7 范壮军, 刘朗, 李建刚(FAN Zhuang-Jun, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18(6): 1287-1292.
8 吴守军, 成来飞, 张立同(WU Shou-Jun, et al). 无机材料学报(Journal of Inorganic
Materials), 2005, 20(1): 251-256.
9 邱海鹏, 宋永忠(QIU Hai-Peng, et al). 无机材料学报(Journal of Inorganic Materials),
2003, 18(1): 129-135.
10 Mckee D W. In: Thrower PA, editor. Chemistry and physics of carbon, vol 23, New York; Dekker (California. USA): American Carbon Society, 1991. 173-222.
11 Park S J, Seo M K. Carbon, 2001, 39 (8): 1229-1235.
12 Wang C R, Yang J M, Hoffman W. Mater. Chem. Phys., 2002, 74(3): 272-281.
13 Marsh H, Warburton A P. Carbon, 1976, 14 (1): 47-52.
14 Zhang G J, Guo Q G, Liu Z J, et al. J. Nucl. Mater., 2002, 301(2-3): 187-192.
15 Takahashi H, Kuroda H, Akamatu H. Carbon, 1965, 2(4): 423-433.
16 Li PC, Burlington M. Method for making single graphite sheets. USA, US patent 3285697. 1966.
17 唐纳德 R. 阿斯克兰. 材料科学与工程, 北京: 宇航出版社, 1988. 69-71.
18 李圣华. 炭和石墨制品. 北京: 冶金工业出版社, 1983. 36-41.
文章导航

/