研究论文

新型可降解钙磷骨水泥多孔支架研究

  • 魏杰 ,
  • 刘昌胜 ,
  • 洪华 ,
  • 袁媛 ,
  • 陈芳萍
展开
  • 华东理工大学生物材料研究所教育部生物材料工程研究中心, 上海 200237

收稿日期: 2005-07-04

  修回日期: 2005-10-26

  网络出版日期: 2006-07-20

Novel Biodegradable Scaffold of Calcium Phosphate Cement

  • WEI Jie ,
  • LIU Chang-Sheng ,
  • HONG Hua ,
  • YUAN Yuan ,
  • CHEN Fang-Ping
Expand
  • Engineering Research Center for Biomedical Materials of Ministry of Education Institute of Biomaterials, East China University of Science and Technology, Shanghai 200237, China

Received date: 2005-07-04

  Revised date: 2005-10-26

  Online published: 2006-07-20

摘要

采用一种特殊的方法制备了孔径、孔隙率和孔形状可控的多孔羟基磷灰石骨水泥支架. 材料的抗压强度可达4MPa, 孔隙率可达70%, 孔与孔之间互相贯通, 大孔壁富含微孔. 细胞在材料表面黏附铺展且增殖良好, 体外模拟实验显示材料的降解速度随孔隙率的增加和Ca/P比的降低而加快, 多孔支架有优良的生物降解性和生物相容性. 该材料可用于修复骨组织缺损和作为支架材料用于组织工程.

本文引用格式

魏杰 , 刘昌胜 , 洪华 , 袁媛 , 陈芳萍 . 新型可降解钙磷骨水泥多孔支架研究[J]. 无机材料学报, 2006 , 21(4) : 958 -964 . DOI: 10.3724/SP.J.1077.2006.00958

Abstract

A novel porous scaffold of calcium phosphate cement with porosity-controllable, pore size-controllable and morphology-controllable was prepared and cell culture with scaffold was studied, also, the biodegradation of the porous scaffold in SBF was investigated. The results reveal that the compressive strength of the porous bone cement can reach 4MPa, the porosity of the scaffold can reach 70%,
abundant micropores are on the wall of the macroposes and the pores are interconnected with each other, the cultural cell are attached, dispersed and preferentially proliferated on the surface of the scaffolds materials. The biodegradation ratio increases with the increasing of porosity and decreasing of Ca/P ratio of the calcium phosphate cement. The scaffolds not only have good
biocompatibility but also biodegradation. The novel new type of biodegradable Ca-P materials can be used as scaffolds for bone defect repair and tissue engineering.

参考文献

1 Liu Changsheng, Cai Wei, Pan Songhua, et al. Biomaterials, 2003, 24: 2995-3003.
2 Liu Changsheng, Shen Wei. Materials Chemistry and Physics, 1999, 58: 78-82.
3 Patrick Frayssinet, Laurent Gineste, Philippe Conte. Biomaterials, 1998, 19: 971-977.
4 Grover L M, Knowles J C, Fleming G J P, et al. Biomaterials, 2003, 24: 4133-4141.
5 Theiss Felix, Apelt Detlef, Brand Bastian. Biomaterials, 2005, 26: 4383-4394.
6 Szchian Liou, Sanyuan Chen, Hsinyi Lee, et al. Biomaterials, 2004, 25: 189-196.
7 Madihally, Sundararajan V Mattew, et al. Biomaterials, 1999, 20: 1133-1142.
8 Yao Jun, Radin Shula, S Leboy Phoebe, et al. Biomaterials, 2005, 26: 1935-1943.
9 Li Yubao K de Groot. J. Mater Sci.: Mater. Med, 1994, 5: 326.
10 Wei Jie, Li Yubao. European Polymer Journal, 2004, 40: 509.
11 Wei Jie, Li Yubao, He Yi. J. Mater. Sci. Let., 2005, 40: 793.
12 Ooms Y, Shibutani T, Moriwaki Y, et al. J. Biomed. Mater. Res., 1998, 39: 603-610.
13 Wang Xiaohong, Ma Jianbao, Wang Yinong, et al. Biomaterials, 2002, 23: 4167-4176.
14 Benahmed M, Bouler J M, Heymann D, et al. Biomaterials, 1996, 17: 2173-2178.
文章导航

/