分别采用三种方法合成了尖晶石型Li4Ti5O12电极材料. 考察了不同的工艺条件对目标材料性能的影响. 应用XRD、SEM、LSD、CV、AC impedance以及恒流充放电测试等手段对目标材料进行了结构表征和性能测试. 结果表明, 利用溶剂分散湿磨可以在较短的时间内得到纯相的Li4Ti5O12. 葡萄糖的加入能够提高Li4Ti5O12导电性, 使材料具有良好的嵌锂性能. 在0.2C倍率下进行充放电测试, 其可逆比容量超过160mAh·g-1, 44次循环后, 容量没有明显衰减. Li4Ti5O12/LiFePO4实验电池测试表明Li4Ti5O12是可选的锂离子负极材料.
Spinel lithium titanium composite oxides (Li4Ti5O12) were synthesized by three
methods. The effects of the synthesis conditions on the properties of as-synthesized cathode materials were investigated. The crystal structure and the electrochemical performance were characterized by XRD, SEM, LSD, CV, AC impedance and galvanostatically charge-discharge experiments. The results demonstrated that pure Li4Ti5O12 powders could be prepared in short time by using organic solvent. Glucose was added to improve the conductivity of Li4Ti5O12, and the powders showed a good lithiumation performance. The reversible capacity of the material, more than 160mAh·g-1, was delivered at room temperature and 0.2C rate, and the charge-discharge efficiency was almost 100%. After 44 cycles, there was no obvious capacity fade. The charge and discharge results of Li4Ti5O12/LiFePO4 indicated that Li4Ti5O12 was a good candidate material of negative electrode for lithium-ion battery.
1 陈方, 梁海潮, 李仁贵, 等 (CHEN Fang, et al). 无机材料学报 (Journal
of Inorganic Materials), 2005, 20(3): 537-543.
2 Garnier S, Bohnke C, Bohnke O, et al. Solid State Ionics, 1996, 83: 323-332.
3 Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Sco., 1995, 142(5): 1431-1435.
4 Scharner S, Weppner W, Schmid B P. J. Electrochem. Soc., 1999, 146(3): 857-861.
5 Kavan L, Gratzel M. Electrochem. and Solid-State Lett., 2002, 5(2): A39-A42.
6 Zaghib K, Simoneau M, Armand M, et al. J. Power Sources, 1999, 81-82: 300-305.
7 Mastatodhi M, Staoshi U, Eriko Y, et al. J. Power Sources, 2001, 101: 53-59.
8 Aurelien D P, Alexis L, Patrice S. J. Power Sources, 2004, 125: 95-102.
9 Tsutomu O, Koji T, Naoki M, et al. J. Electrochem. Soc., 2000, 147(10): 3592-3597.
10 Chen C H, Vaughey J T, Jansen A N, et al. J. Electrochem. Soc., 2001, 148(1): 102-104.
11 Huang S H, Wen Z Y, Zhu X J, et al. Electrochem. Commun., 2004, 6: 1093-1097.
12 Kanamura K, Umegaki T, Naito H, et al. J. Appl. Electrochem., 2001, 31: 73-78.
13 杨小燕, 华寿南, 张树永. 电化学, 2000, 6(3): 350-356.
14 Wang G X, Bewlav S L, Konstantinov, K, et al. Electrochimica Acta, 2004, 50(2-3): 441-445.